cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A339807 Irregular triangle read by rows: T(n,k) (n>=2, k>=1) is the number of strong digraphs on n nodes with k descents.

Original entry on oeis.org

1, 2, 11, 5, 10, 154, 540, 581, 272, 49, 122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893, 3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649
Offset: 2

Views

Author

Hugo Pfoertner, Dec 28 2020

Keywords

Comments

T(n,1) = A005321(n-1). Length of row n = binomial(n,2). It appears that T(n,binomial(n,2)) = A348901(n-1). - Geoffrey Critzer, Feb 12 2025

Examples

			Triangle begins:
 1;
 2, 11, 5;
 10, 154, 540, 581, 272, 49;
 122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893;
 3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649;
 ...
		

Crossrefs

Cf. A003030 (row sums), A057273 (another version of the same triangle), A307049, A339590, A005321, A000217.

Programs

  • Mathematica
    nn = 8; B[n_] := FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; g[z_] := Sum[(1 + u y)^Binomial[n, 2] z^n/FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]], {n, 0, nn}]; egf[eggf_] := Normal[Series[eggf, {z, 0, nn}]] /.Table[z^i -> z^i*B[i]/i!, {i, 1, nn + 1}]; Map[Drop[#, 1] &, Drop[Map[CoefficientList[#, u] &, Table[n!, {n, 0, nn}]CoefficientList[Series[-Log[egf[1/g[z]]], {z, 0, nn}], z] /. y -> 1], 2]] // Grid (* Geoffrey Critzer, Feb 12 2025 *)

Extensions

Row 2 added by N. J. A. Sloane, Dec 29 2020

A348902 G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(4*x)).

Original entry on oeis.org

1, 1, 9, 305, 39705, 20412737, 41846783913, 342892875489361, 11236600170415809849, 1472826135905484728387681, 772188014962631262957890704329, 1619397184353040716422147490531778929, 13584491414647344530078887450781292845554521
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 12; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + Sum[2^(2 k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 12}]

Formula

a(0) = 1; a(n) = -a(n-1) + Sum_{k=0..n-1} 2^(2*k+1) * a(k) * a(n-k-1).
a(n) ~ c * 2^(n^2), where c = 2^(7/8) / EllipticTheta(2, 0, 1/sqrt(2)) = 0.6091497110662286155211146043057245512950999410185846745870491125003511... (same constant as in A165941). - Vaclav Kotesovec, Nov 03 2021, updated Apr 21 2024

A348188 G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(3*x)).

Original entry on oeis.org

1, 1, 7, 139, 7813, 1282741, 626077507, 914089078999, 4000061058178633, 52496811551448519241, 2066694521388276020211487, 244076623554395367965602542499, 86475371441574361841467969073397133, 91913288701991663661449175594278601481981
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 13; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[3 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + 2 Sum[3^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]

Formula

a(0) = 1; a(n) = -a(n-1) + 2 * Sum_{k=0..n-1} 3^k * a(k) * a(n-k-1).
a(n) ~ c * 3^(n*(n-1)/2) * 2^n, where c = 0.68317332785969015770364424102230433743028917778042859282957908502822... - Vaclav Kotesovec, Nov 03 2021

A349038 G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(-2*x)).

Original entry on oeis.org

1, 1, -3, -31, 453, 15641, -973443, -126707471, 32192101173, 16547934365321, -16912274385623763, -34670312866958030751, 141940412456349939507813, 1163060052394732038435530361, -19053251054424307861590927924003, -624375047526738670923288994646642991
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[-2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -a[n - 1] - Sum[(-2)^(k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = -a(n-1) - Sum_{k=0..n-1} (-2)^(k+1) * a(k) * a(n-k-1).

A348903 G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x - x * A(2*x)).

Original entry on oeis.org

1, 3, 15, 123, 1623, 35427, 1349727, 94653195, 12690736167, 3325408581747, 1722610175806383, 1774299723226774683, 3644417103927252697335, 14949404433893216347632003, 122555228634241017164802041343, 2008680242472430855727593100321067
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1/(1 - 2*x - x*A[2*x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

a(n) ~ c * 2^(n*(n-1)/2), where c = 6*Product_{j>=1} (2^j+1)/(2^j-1) = 49.5359276146695003932648450...
a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=0..n-1} 2^k * a(k) * a(n-k-1). - Ilya Gutkovskiy, Nov 03 2021
Showing 1-5 of 5 results.