cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A165941 G.f.: A(x) = exp( Sum_{n>=1} 2^n * x^n/(n*(1+x^n)) ).

Original entry on oeis.org

1, 2, 2, 6, 10, 18, 42, 78, 154, 314, 626, 1246, 2498, 4994, 9970, 19974, 39930, 79826, 159706, 319374, 638714, 1277530, 2554978, 5109854, 10219922, 20439714, 40879234, 81758854, 163517466, 327034514, 654069866, 1308139246, 2616277578
Offset: 0

Views

Author

Paul D. Hanna, Oct 20 2009

Keywords

Comments

Compare to: exp( Sum_{n>=1} x^n/(1+x^n)/n ) = Sum_{n>=0} x^(n*(n+1)/2).

Examples

			G.f.: A(x) = 1 + 2*x + 2*x^2 + 6*x^3 + 10*x^4 + 18*x^5 + 42*x^6 + 78*x^7 +...
such that
log(A(x)) = 2*x/(1+x) + 2^2*x^2/(2*(1+x^2)) + 2^3*x^3/(3*(1+x^3)) + 2^4*x^4/(4*(1+x^4)) + 2^5*x^5/(5*(1+x^5)) +...
Also, A(x) = (1 + x*B(x))/(1 - x*B(x)), where
B(x) = 1 + 2*x^2 + 2*x^4 + 4*x^5 + 2*x^6 + 8*x^7 + 6*x^8 + 20*x^9 + 18*x^10 + 36*x^11 + 54*x^12 + 76*x^13 + 150*x^14 + 172*x^15 +...
such that B(x) = (1 + x*C(x))/(1 - x*C(x)), where
C(x) = 1 + 2*x^3 + 2*x^6 + 4*x^7 + 2*x^9 + 8*x^10 + 4*x^11 + 10*x^12 + 12*x^13 + 16*x^14 + 22*x^15 + 32*x^16 + 44*x^17 + 66*x^18 +...
such that C(x) = (1 + x*D(x))/(1 - x*D(x)), where
D(x) = 1 + 2*x^4 + 2*x^8 + 4*x^9 + 2*x^12 + 8*x^13 + 4*x^14 + 8*x^15 + 2*x^16 + 12*x^17 + 16*x^18 + 20*x^19 + 18*x^20 + 24*x^21 +...
such that D(x) = (1 + x*E(x))/(1 - x*E(x)), where
E(x) = 1 + 2*x^5 + 2*x^10 + 4*x^11 + 2*x^15 + 8*x^16 + 4*x^17 + 8*x^18 + 2*x^20 + 12*x^21 + 16*x^22 + 20*x^23 + 16*x^24 + 10*x^25 +...
such that E(x) = (1 + x*F(x))/(1 - x*F(x)), where
F(x) = 1 + 2*x^6 + 2*x^12 + 4*x^13 + 2*x^18 + 8*x^19 + 4*x^20 + 8*x^21 + 2*x^24 + 12*x^25 + 16*x^26 + 20*x^27 + 16*x^28 + 8*x^29 + 18*x^30 + 16*x^31 + 36*x^32 +...
etc.
The coefficients in the above functions tend toward the terms in triangle A259192.
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[2^k * x^k / (1 + x^k)/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
  • PARI
    {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, 2^m*x^m/(1+x^m+x*O(x^n))/m)), n))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x^(n+1-i)*A)/(1 - x^(n+1-i)*A+ x*O(x^n)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: -1 + 2/(1+x - 2*x/(1+x^2 - 2*x^2/(1+x^3 - 2*x^3/(1+x^4 - 2*x^4/(1+x^5 - 2*x^5/(1+x^6 - 2*x^6/(1+x^7 - 2*x^7/(1+x^8 - 2*x^8/(...))))))))), a continued fraction.
G.f.: A(x) = (1 + x*B(x))/(1 - x*B(x)), where B(x) = (1 + x^2*C(x))/(1 - x^2*C(x)), C(x) = (1 + x^3*D(x))/(1 - x^3*D(x)), D(x) = (1 + x^4*E(x))/(1 - x^4*E(x)), ... - Paul D. Hanna, Jun 14 2015
a(n) ~ c * 2^n, where c = 2^(7/8) / EllipticTheta(2, 0, 1/sqrt(2)) = 0.6091497110662286155211146043057245512950999410185846... - Vaclav Kotesovec, Oct 18 2020, updated Apr 18 2024

A348901 G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(2*x)).

Original entry on oeis.org

1, 1, 5, 49, 893, 30649, 2030213, 264198625, 68180168717, 35046644401609, 35958357173552597, 73714882938928013809, 302083844634245306686685, 2475275541582550287356775001, 40559867144321249927245807932197, 1329146863668196853655964629931680001
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2021

Keywords

Comments

Counts lower triangular (0,1) matrices with 1's on the diagonal which cannot be decomposed in a nontrivial block diagonal fashion. For example, the third time is 5, counting the matrices [100,110,111], [100,110,011], [100,010,111], [100,110,101], [100,010,101]. There are 3 other 3x3 lower triangular (0,1) matrices with 1's on the diagonal; those others have block decompositions. - David Speyer, Jul 09 2025

Crossrefs

Programs

  • Mathematica
    nmax = 15; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + Sum[2^(k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = -a(n-1) + Sum_{k=0..n-1} 2^(k+1) * a(k) * a(n-k-1).
a(n) ~ 2^(n*(n+1)/2). - Vaclav Kotesovec, Nov 03 2021
G.f. A(x) satisfies 1/(1 - x*A(x)) = Sum_{n>=0} 2^(n(n-1)/2) * x^n. - David Speyer, Jul 09 2025

A348188 G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(3*x)).

Original entry on oeis.org

1, 1, 7, 139, 7813, 1282741, 626077507, 914089078999, 4000061058178633, 52496811551448519241, 2066694521388276020211487, 244076623554395367965602542499, 86475371441574361841467969073397133, 91913288701991663661449175594278601481981
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 13; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[3 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + 2 Sum[3^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]

Formula

a(0) = 1; a(n) = -a(n-1) + 2 * Sum_{k=0..n-1} 3^k * a(k) * a(n-k-1).
a(n) ~ c * 3^(n*(n-1)/2) * 2^n, where c = 0.68317332785969015770364424102230433743028917778042859282957908502822... - Vaclav Kotesovec, Nov 03 2021

A349046 G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(-4*x)).

Original entry on oeis.org

1, 1, -7, -239, 30185, 15518977, -31752293287, -260178568173071, 8525011498792301513, 1117407361630407158712289, -585841036144574163016069731271, -1228598872333737909217248906305521967, 10306231872061986643099600924851012311829929
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 12; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[-4 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + 2 Sum[(-4)^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 12}]

Formula

a(0) = 1; a(n) = -a(n-1) + 2 * Sum_{k=0..n-1} (-4)^k * a(k) * a(n-k-1).
Showing 1-4 of 4 results.