cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348748 Odd numbers k for which A064989(sigma(k)) < A064989(k), where A064989 shifts the prime factorization one step towards lower primes, and sigma is the sum of divisors function.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

Sequence obtained when A003961 is applied to A348738 and the terms are sorted into ascending order.
The first squares in this sequence are: 169, 361, 961, 1369, 1849, 2209, 2809, 3721, 4489, 5329, 6241, 6889, ...

Crossrefs

Cf. A000203, A003961, A064989, A326042, A348738, A348749, A348938 (terms of A228058 that occur here).
Cf. also A348741, A348753.

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[1, 200, 2], s[DivisorSigma[1, #]] < s[#] &] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    isA348748(n) = ((n%2)&&(A064989(sigma(n)) < A064989(n)));

A348939 Odd numbers k for which A064989(sigma(k)) > A064989(k), and which are of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1.

Original entry on oeis.org

45, 117, 325, 333, 405, 549, 605, 657, 925, 1053, 1413, 1445, 1525, 1737, 1825, 2205, 2493, 2817, 2825, 2925, 2997, 3033, 3573, 3645, 3789, 3825, 3925, 4113, 4825, 4869, 4941, 5445, 5517, 5733, 5913, 5949, 6057, 6425, 6525, 6597, 6813, 6925, 7025, 7497, 7605, 7825, 7893, 8125, 8325, 8425, 8973, 9225, 9477, 9837, 9925
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2021

Keywords

Comments

Obviously, any hypothetical odd perfect number would be neither in this sequence nor in A348938.

Crossrefs

Intersection of A228058 and A348749.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; odde = Select[e, OddQ]; Length[e] > 1 && Length[odde] == 1 && Divisible[odde[[1]] - 1, 4] && Divisible[p[[Position[e, odde[[1]]][[1, 1]]]] - 1, 4]]; f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[1, 10000, 2], q[#] && s[DivisorSigma[1, #]] > s[#] &] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f) };
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    isA348749(n) = ((n%2)&&(A064989(sigma(n)) > A064989(n)));
    isA348939(n) = (isA228058(n)&&isA348749(n));

A351535 Odd numbers k that are not multiples of 3 and for which sigma(k) is congruent to 2 modulo 4.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 245, 257, 269, 277, 281, 293, 313, 317, 325, 337, 349, 353, 373, 389, 397, 401, 409, 421, 425, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 605, 613, 617, 637, 641, 653, 661, 673, 677, 701, 709
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2022

Keywords

Comments

a(25) = 245 = 5* 7^2 is the first term that is not prime.
The sequence shows a steady high percentage of primes. The percentages of the number of prime terms in the first 10^3, ..., 10^8 terms are 86.9, 86.6, 87.1, 87.8, 88.4, 88.8. Additionally, approx 99% of the composite terms indivisible by 5 belong to A348938. - Bill McEachen, Aug 21 2025

Crossrefs

Intersection of A001651 and A191218. Complement of A351533 in A191218.
Cf. A002144 (subsequence).

Programs

  • Mathematica
    Select[Range[1, 700, 2], !Divisible[#, 3] && Mod[DivisorSigma[1, #], 4] == 2 &] (* Amiram Eldar, Feb 13 2022 *)
  • PARI
    isA351535(n) = ((n%2) && (0!=(n%3)) && (2 == (sigma(n)%4)));
Showing 1-3 of 3 results.