A348953 a(n) = -Sum_{d|n, d < sqrt(n)} (-1)^(d + n/d) * d.
0, 1, -1, 1, -1, 3, -1, -1, -1, 3, -1, 2, -1, 3, -4, -1, -1, 6, -1, 3, -4, 3, -1, -2, -1, 3, -4, 3, -1, 11, -1, -5, -4, 3, -6, 6, -1, 3, -4, 0, -1, 12, -1, 3, -9, 3, -1, -8, -1, 8, -4, 3, -1, 12, -6, 2, -4, 3, -1, 5, -1, 3, -11, -5, -6, 12, -1, 3, -4, 15, -1, 0, -1, 3, -9, 3, -8, 12, -1, -8
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
Table[-DivisorSum[n, (-1)^(# + n/#) # &, # < Sqrt[n] &], {n, 1, 80}] nmax = 80; CoefficientList[Series[Sum[k x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
PARI
A348953(n) = -sumdiv(n,d,if((d*d)
Antti Karttunen, Nov 05 2021
Formula
G.f.: Sum_{k>=1} k * x^(k*(k + 1)) / (1 + x^k).