cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A348952 a(n) = -Sum_{d|n, d < sqrt(n)} (-1)^(d + n/d).

Original entry on oeis.org

0, 1, -1, 1, -1, 2, -1, 0, -1, 2, -1, 1, -1, 2, -2, 0, -1, 3, -1, 1, -2, 2, -1, 0, -1, 2, -2, 1, -1, 4, -1, -1, -2, 2, -2, 2, -1, 2, -2, 0, -1, 4, -1, 1, -3, 2, -1, -1, -1, 3, -2, 1, -1, 4, -2, 0, -2, 2, -1, 2, -1, 2, -3, -1, -2, 4, -1, 1, -2, 4, -1, 0, -1, 2, -3, 1, -2, 4, -1, -1
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-DivisorSum[n, (-1)^(# + n/#) &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348952(n) = -sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} x^(k*(k + 1)) / (1 + x^k).
For p odd prime, a(p) = a(p^2) = -1. - Bernard Schott, Nov 22 2021
a(n) = (A010052(n) - A228441(n))/2. - Ridouane Oudra, Aug 14 2025
a(n) = A010052(n) - A305152(n). - Ridouane Oudra, Aug 20 2025

A348951 a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(n/d).

Original entry on oeis.org

0, 1, -1, 1, -1, 0, -1, 2, -1, 0, -1, 3, -1, 0, -2, 2, -1, 1, -1, 1, -2, 0, -1, 4, -1, 0, -2, 1, -1, 2, -1, 3, -2, 0, -2, 2, -1, 0, -2, 4, -1, 0, -1, 1, -3, 0, -1, 5, -1, 1, -2, 1, -1, 0, -2, 4, -2, 0, -1, 4, -1, 0, -3, 3, -2, 0, -1, 1, -2, 2, -1, 4, -1, 0, -3, 1, -2, 0, -1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(n/#) &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348951(n) = sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * x^(k*(k + 1)) / (1 + x^k).
a(n) = A258998(n) - A348515(n). - Ridouane Oudra, Aug 21 2025

A348953 a(n) = -Sum_{d|n, d < sqrt(n)} (-1)^(d + n/d) * d.

Original entry on oeis.org

0, 1, -1, 1, -1, 3, -1, -1, -1, 3, -1, 2, -1, 3, -4, -1, -1, 6, -1, 3, -4, 3, -1, -2, -1, 3, -4, 3, -1, 11, -1, -5, -4, 3, -6, 6, -1, 3, -4, 0, -1, 12, -1, 3, -9, 3, -1, -8, -1, 8, -4, 3, -1, 12, -6, 2, -4, 3, -1, 5, -1, 3, -11, -5, -6, 12, -1, 3, -4, 15, -1, 0, -1, 3, -9, 3, -8, 12, -1, -8
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-DivisorSum[n, (-1)^(# + n/#) # &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[k x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348953(n) = -sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} k * x^(k*(k + 1)) / (1 + x^k).
a(n) = A037213(n) - A348608(n). - Ridouane Oudra, Aug 21 2025

A348955 a(1) = 1; a(n) = Sum_{d|n, d <= sqrt(n)} a(d)^2.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 6, 1, 3, 1, 6, 2, 2, 1, 7, 2, 2, 2, 6, 1, 4, 1, 6, 2, 2, 2, 11, 1, 2, 2, 7, 1, 7, 1, 6, 3, 2, 1, 11, 2, 3, 2, 6, 1, 7, 2, 7, 2, 2, 1, 12, 1, 2, 3, 10, 2, 7, 1, 6, 2, 4, 1, 15, 1, 2, 3, 6, 2, 7, 1, 11, 6, 2, 1, 12, 2, 2, 2, 10, 1, 12
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Cf. A008578 (positions of 1's), A067868, A068108, A082588, A337135, A348956.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = DivisorSum[n, a[#]^2 &, # <= Sqrt[n] &]; Table[a[n], {n, 90}]
  • PARI
    A348955(n) = if(1==n,n,sumdiv(n,d,if((d*d)<=n,A348955(d)^2,0))); \\ Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} a(k)^2 * x^(k^2) / (1 - x^k).
a(4^n) = A067868(n).

A348954 a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(n/d) * d.

Original entry on oeis.org

0, 1, -1, 1, -1, -1, -1, 3, -1, -1, -1, 6, -1, -1, -4, 3, -1, 2, -1, -1, -4, -1, -1, 10, -1, -1, -4, -1, -1, 7, -1, 7, -4, -1, -6, 2, -1, -1, -4, 12, -1, -4, -1, -1, -9, -1, -1, 16, -1, 4, -4, -1, -1, -4, -6, 14, -4, -1, -1, 13, -1, -1, -11, 7, -6, -4, -1, -1, -4, 11, -1, 8, -1, -1, -9, -1, -8, -4, -1, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(n/#) # &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348954(n) = sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * k * x^(k*(k + 1)) / (1 + x^k).
Showing 1-5 of 5 results.