cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348983 a(n) = Sum_{d|n} A038040(d) * A322582(n/d), where A038040(n) = n*d(n), A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 7, 1, 14, 1, 31, 11, 20, 1, 80, 1, 26, 23, 111, 1, 109, 1, 122, 29, 38, 1, 328, 19, 44, 76, 164, 1, 250, 1, 351, 41, 56, 35, 565, 1, 62, 47, 514, 1, 334, 1, 248, 208, 74, 1, 1128, 27, 245, 59, 290, 1, 650, 47, 700, 65, 92, 1, 1336, 1, 98, 274, 1023, 53, 502, 1, 374, 77, 490, 1, 2213, 1, 116, 302, 416, 53
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A322582 with A038040, which is the Dirichlet convolution of the identity function (A000027) with itself.
Dirichlet convolution of the identity function (A000027) with A348980.
Dirichlet convolution of sigma (A000203) with A348981.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (# - s[#])*(n/#)*DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A038040(n) = (n*numdiv(n));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348983(n) = sumdiv(n,d,A038040(n/d)*A322582(d));

Formula

a(n) = Sum_{d|n} A038040(n/d) * A322582(d).
a(n) = Sum_{d|n} d * A348980(n/d).
a(n) = Sum_{d|n} A000203(d) * A348981(n/d).
For all n >= 1, a(n) <= A349123(n) <= A349143(n).