A348983 a(n) = Sum_{d|n} A038040(d) * A322582(n/d), where A038040(n) = n*d(n), A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).
0, 1, 1, 7, 1, 14, 1, 31, 11, 20, 1, 80, 1, 26, 23, 111, 1, 109, 1, 122, 29, 38, 1, 328, 19, 44, 76, 164, 1, 250, 1, 351, 41, 56, 35, 565, 1, 62, 47, 514, 1, 334, 1, 248, 208, 74, 1, 1128, 27, 245, 59, 290, 1, 650, 47, 700, 65, 92, 1, 1336, 1, 98, 274, 1023, 53, 502, 1, 374, 77, 490, 1, 2213, 1, 116, 302, 416, 53
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (# - s[#])*(n/#)*DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
-
PARI
A038040(n) = (n*numdiv(n)); A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); }; A322582(n) = (n-A003958(n)); A348983(n) = sumdiv(n,d,A038040(n/d)*A322582(d));
Comments