cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A322582 a(n) = n - A003958(n), where A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 5, 6, 1, 10, 1, 8, 7, 15, 1, 14, 1, 16, 9, 12, 1, 22, 9, 14, 19, 22, 1, 22, 1, 31, 13, 18, 11, 32, 1, 20, 15, 36, 1, 30, 1, 34, 29, 24, 1, 46, 13, 34, 19, 40, 1, 46, 15, 50, 21, 30, 1, 52, 1, 32, 39, 63, 17, 46, 1, 52, 25, 46, 1, 68, 1, 38, 43, 58, 17, 54, 1, 76, 65, 42, 1, 72, 21, 44, 31, 78, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2018

Keywords

Comments

a(p*(n/p)) - (n/p) = (p-1)*a(n/p) holds for all prime divisors p of n, which can be seen by expanding the left hand side as p*(n/p) - A003958(p*(n/p)) - (n/p) = (p-1)*(n/p) - (p-1)*A003958(n/p) = (p-1)*((n/p) - A003958(n/p)) = (p-1)*a(n/p). This shows that this sequence gives a lower limit for arithmetic derivative (A003415) in the same way as A348507 gives an upper limit for it. - Antti Karttunen, Nov 07 2021
With n = Product_{i=1..k} p_i the prime factorization of n, if one constructs for each i a test with a probability of success equal to 1/p_i, and if the tests are independent, then a(n)/n is the probability that at least one of the k tests succeeds. - Luc Rousseau, Jan 14 2023

Crossrefs

Cf. A003415, A003958, A322581, A348507, A348928 [= gcd(n,a(n))], A348975 (difference from the arithmetic derivative).
Cf. A349139, A348980, A348981, A348982, A348983 (Dirichlet convolutions with other sequences).
Cf. A168065 (gives the arithmetic mean of this and A348507), A168066.

Programs

  • Mathematica
    a[1] = 0; a[n_] := n - Times @@ ((First[#] - 1)^Last[#] & /@ FactorInteger[n]); Array[a, 60] (* Amiram Eldar, Dec 17 2018 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    
  • PARI
    A020639(n) = if(1==n, n, (factor(n)[1, 1]));
    A322582(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= (spf-1)); (s); }; \\ (Compare to the similar programs given in A003415 and A348507) - Antti Karttunen, Nov 07 2021

Formula

a(n) = n - A003958(n).
From Antti Karttunen, Nov 07 2021: (Start)
a(n) = A003415(n) - A348975(n).
For all n >= 1, a(n) <= A003415(n) <= A348507(n).
For n > 1, a(n) = a(A032742(n))*(A020639(n)-1) + A032742(n). [See the comment above and compare with Reinhard Zumkeller's May 09 2011 formula for A003415]
(End)

A348980 a(n) = Sum_{d|n} d * A322582(n/d), where A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 5, 1, 9, 1, 17, 8, 13, 1, 37, 1, 17, 15, 49, 1, 51, 1, 57, 19, 25, 1, 117, 14, 29, 43, 77, 1, 105, 1, 129, 27, 37, 23, 191, 1, 41, 31, 185, 1, 141, 1, 117, 99, 49, 1, 325, 20, 117, 39, 137, 1, 237, 31, 253, 43, 61, 1, 405, 1, 65, 131, 321, 35, 213, 1, 177, 51, 209, 1, 579, 1, 77, 145, 197, 35, 249, 1, 521
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A322582 with the identity function, A000027.

Crossrefs

Cf. A000027, A003958, A038040, A322582, A348981 (Möbius transform), A348982, A348983, A349130.
Cf. also A347130, A349140.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, #*(n/# - s[n/#]) &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348980(n) = sumdiv(n,d,d*A322582(n/d));

Formula

a(n) = Sum_{d|n} d * A322582(n/d).
For all n >= 1, a(n) <= A347130(n) <= A349140(n).
a(n) = A038040(n) - A349130(n). - Antti Karttunen, Nov 14 2021

A348981 a(n) = Sum_{d|n} phi(n/d) * A322582(d), where A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 4, 1, 7, 1, 12, 7, 11, 1, 24, 1, 15, 13, 32, 1, 35, 1, 40, 17, 23, 1, 68, 13, 27, 35, 56, 1, 71, 1, 80, 25, 35, 21, 112, 1, 39, 29, 116, 1, 99, 1, 88, 77, 47, 1, 176, 19, 91, 37, 104, 1, 151, 29, 164, 41, 59, 1, 232, 1, 63, 105, 192, 33, 155, 1, 136, 49, 159, 1, 308, 1, 75, 117, 152, 33, 183, 1, 304, 151
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with A322582.
Möbius transform of A348980.

Crossrefs

Cf. A000010, A003958, A008683, A018804, A322582, A348980 (Inverse Möbius transform), A348981, A348982, A348983, A349131.
Cf. also A347131, A349141.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (# - s[#]) * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348981(n) = sumdiv(n,d,A322582(n/d)*eulerphi(d));

Formula

a(n) = Sum_{d|n} A000010(n/d) * A322582(d).
a(n) = Sum_{d|n} A008683(n/d) * A348980(d).
a(n) = Sum_{k=1..n} A322582(gcd(n,k)).
For all n >= 1, a(n) <= A347131(n) <= A349141(n).
a(n) = A018804(n) - A349131(n). - Antti Karttunen, Nov 14 2021

A348982 a(n) = Sum_{d|n} psi(n/d) * A322582(d), where psi is Dedekind psi (A001615), A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 6, 1, 11, 1, 22, 9, 15, 1, 52, 1, 19, 17, 66, 1, 69, 1, 76, 21, 27, 1, 176, 15, 31, 51, 100, 1, 145, 1, 178, 29, 39, 25, 288, 1, 43, 33, 264, 1, 189, 1, 148, 123, 51, 1, 508, 21, 145, 41, 172, 1, 339, 33, 352, 45, 63, 1, 632, 1, 67, 159, 450, 37, 277, 1, 220, 53, 265, 1, 924, 1, 79, 175, 244, 37, 321
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A001615 with A322582.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)*p^(e - 1); psi[1] = 1; psi[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (# - s[#])*psi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348982(n) = sumdiv(n,d,A001615(n/d)*A322582(d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A322582(d).
For all n >= 1, a(n) <= A347132(n) <= A349142(n).
a(n) = A327251(n) - A349132(n). - Antti Karttunen, Nov 14 2021

A349143 a(n) = Sum_{d|n} A038040(d) * A348507(n/d), where A038040(n) = n*tau(n), A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 9, 1, 16, 1, 51, 13, 22, 1, 114, 1, 28, 25, 233, 1, 145, 1, 168, 31, 40, 1, 590, 21, 46, 106, 222, 1, 310, 1, 939, 43, 58, 37, 915, 1, 64, 49, 896, 1, 406, 1, 330, 262, 76, 1, 2570, 29, 297, 61, 384, 1, 1012, 49, 1202, 67, 94, 1, 2040, 1, 100, 340, 3489, 55, 598, 1, 492, 79, 574, 1, 4457, 1, 118, 360, 546, 55
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A348507 with A038040, which is the Dirichlet convolution of the identity function (A000027) with itself.
Dirichlet convolution of the identity function (A000027) with A349140.
Dirichlet convolution of sigma (A000203) with A349141.
Dirichlet convolution of A060640 with A348971.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, #*DivisorSigma[0, #]*(s[n/#] - n/#) &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A038040(n) = (n*numdiv(n));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349143(n) = sumdiv(n,d,A038040(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A038040(n/d) * A348507(d).
a(n) = Sum_{d|n} d * A349140(n/d).
a(n) = Sum_{d|n} A000203(d) * A349141(n/d).
a(n) = Sum_{d|n} A060640(d) * A348971(n/d).
For all n >= 1, a(n) >= A349123(n) >= A348983(n).

A349123 a(n) = Sum_{d|n} A038040(n/d) * A003415(d), where A038040(n) = n*tau(n), and A003415 is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 8, 1, 15, 1, 40, 12, 21, 1, 96, 1, 27, 24, 160, 1, 126, 1, 144, 30, 39, 1, 440, 20, 45, 90, 192, 1, 279, 1, 560, 42, 57, 36, 720, 1, 63, 48, 680, 1, 369, 1, 288, 234, 75, 1, 1680, 28, 270, 60, 336, 1, 810, 48, 920, 66, 93, 1, 1656, 1, 99, 306, 1792, 54, 549, 1, 432, 78, 531, 1, 3120, 1, 117, 330, 480, 54, 639
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

This sequence is the Dirichlet convolution of at least the following pairs of sequences:
- A003415 (the arithmetic derivative) with A038040,
- A000027 (the identity function) with A347130,
- A000203 (sigma) with A347131,
- A018804 with A319684,
- A060640 with A300251.

Crossrefs

Programs

  • Mathematica
    d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := DivisorSum[n, d[#]*(n/#)*DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A038040(n) = (n*numdiv(n));
    A349123(n) = sumdiv(n,d,A038040(d)*A003415(n/d));

Formula

a(n) = Sum_{d|n} A038040(d) * A003415(n/d).
a(n) = Sum_{d|n} d * A347130(n/d).
a(n) = Sum_{d|n} A000203(d) * A347131(n/d).
a(n) = Sum_{d|n} A018804(d) * A319684(n/d).
a(n) = Sum_{d|n} A060640(d) * A300251(n/d).
For all n >= 1, A348983(n) <= a(n) <= A349143(n).
a(n) = A003557(n) * A349124(n).
Showing 1-6 of 6 results.