cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A348507 a(n) = A003959(n) - n, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 19, 7, 8, 1, 24, 1, 10, 9, 65, 1, 30, 1, 34, 11, 14, 1, 84, 11, 16, 37, 44, 1, 42, 1, 211, 15, 20, 13, 108, 1, 22, 17, 122, 1, 54, 1, 64, 51, 26, 1, 276, 15, 58, 21, 74, 1, 138, 17, 160, 23, 32, 1, 156, 1, 34, 65, 665, 19, 78, 1, 94, 27, 74, 1, 360, 1, 40, 69, 104, 19, 90, 1, 406, 175, 44, 1, 204
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2021

Keywords

Comments

a(p*(n/p)) - (n/p) = (p+1)*a(n/p) holds for all prime divisors p of n, which can be seen by expanding the left hand side as (A003959(p*(n/p)) - (p*(n/p))) - (n/p) = (p+1)*A003959(n/p)-((p+1)*(n/p)) = (p+1)*(A003959(n/p)-(n/p)) = (p+1)*a(n/p). This implies that a(n) >= A003415(n) for all n. (See also comments in A348970). - Antti Karttunen, Nov 06 2021

Crossrefs

Cf. A348971 (Möbius transform) and A349139, A349140, A349141, A349142, A349143 (other Dirichlet convolutions).
Cf. also A168065 (the arithmetic mean of this and A322582), A168066.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    
  • PARI
    A020639(n) = if(1==n,n,(factor(n)[1, 1]));
    A348507(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= (1+spf)); (s); }; \\ (Compare this with similar programs given in A003415 and in A322582) - Antti Karttunen, Nov 06 2021

Formula

a(n) = A003959(n) - n.
a(n) = A348508(n) + n.
a(n) = A001065(n) + A348029(n).
From Antti Karttunen, Nov 06 2021: (Start)
a(n) = Sum_{d|n} A348971(d).
a(n) = A003415(n) + A348970(n).
For all n >= 1, A322582(n) <= A003415(n) <= a(n).
For n > 1, a(n) = a(A032742(n))*(1+A020639(n)) + A032742(n). [See the comments above, and compare this with Reinhard Zumkeller's May 09 2011 recursive formula for A003415] (End)
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065488 - 1. - Amiram Eldar, Jun 01 2025

A348983 a(n) = Sum_{d|n} A038040(d) * A322582(n/d), where A038040(n) = n*d(n), A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 7, 1, 14, 1, 31, 11, 20, 1, 80, 1, 26, 23, 111, 1, 109, 1, 122, 29, 38, 1, 328, 19, 44, 76, 164, 1, 250, 1, 351, 41, 56, 35, 565, 1, 62, 47, 514, 1, 334, 1, 248, 208, 74, 1, 1128, 27, 245, 59, 290, 1, 650, 47, 700, 65, 92, 1, 1336, 1, 98, 274, 1023, 53, 502, 1, 374, 77, 490, 1, 2213, 1, 116, 302, 416, 53
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A322582 with A038040, which is the Dirichlet convolution of the identity function (A000027) with itself.
Dirichlet convolution of the identity function (A000027) with A348980.
Dirichlet convolution of sigma (A000203) with A348981.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (# - s[#])*(n/#)*DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A038040(n) = (n*numdiv(n));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348983(n) = sumdiv(n,d,A038040(n/d)*A322582(d));

Formula

a(n) = Sum_{d|n} A038040(n/d) * A322582(d).
a(n) = Sum_{d|n} d * A348980(n/d).
a(n) = Sum_{d|n} A000203(d) * A348981(n/d).
For all n >= 1, a(n) <= A349123(n) <= A349143(n).

A349140 a(n) = Sum_{d|n} d * A348507(n/d), where A348507(n) = A003959(n) - n, where A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 7, 1, 11, 1, 33, 10, 15, 1, 61, 1, 19, 17, 131, 1, 77, 1, 89, 21, 27, 1, 263, 16, 31, 67, 117, 1, 145, 1, 473, 29, 39, 25, 379, 1, 43, 33, 395, 1, 189, 1, 173, 137, 51, 1, 997, 22, 155, 41, 201, 1, 443, 33, 527, 45, 63, 1, 743, 1, 67, 177, 1611, 37, 277, 1, 257, 53, 265, 1, 1541, 1, 79, 187, 285, 37, 321
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A348507 with the identity function, A000027.
Dirichlet convolution of sigma with A348971.

Crossrefs

Cf. also A347130, A348980.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; a[n_] := DivisorSum[n, #*s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349140(n) = sumdiv(n,d,d*A348507(n/d));

Formula

a(n) = Sum_{d|n} d * A348507(n/d).
a(n) = Sum_{d|n} A000203(d) * A348971(n/d).
a(n) = Sum_{d|n} A349141(d).
For all n >= 1, a(n) >= A347130(n) >= A348980(n).
a(n) = A349170(n) - A038040(n). - Antti Karttunen, Nov 15 2021

A349141 a(n) = Sum_{d|n} phi(n/d) * A348507(d), where A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 6, 1, 9, 1, 26, 9, 13, 1, 44, 1, 17, 15, 98, 1, 57, 1, 68, 19, 25, 1, 176, 15, 29, 57, 92, 1, 105, 1, 342, 27, 37, 23, 252, 1, 41, 31, 280, 1, 141, 1, 140, 111, 49, 1, 636, 21, 125, 39, 164, 1, 309, 31, 384, 43, 61, 1, 480, 1, 65, 147, 1138, 35, 213, 1, 212, 51, 209, 1, 960, 1, 77, 155, 236, 35, 249, 1, 1028
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with A348507.
Möbius transform of A349140.

Crossrefs

Cf. A000010, A003959, A008683, A018804, A348507, A349140 (inverse Möbius transform), A349142, A349143, A349171.
Cf. also A347131, A348981.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (s[#] - #) * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349141(n) = sumdiv(n,d,eulerphi(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A000010(n/d) * A348507(d).
a(n) = Sum_{d|n} A008683(n/d) * A349140(d).
a(n) = Sum_{k=1..n} A348507(gcd(n,k)).
For all n >= 1, a(n) >= A347131(n) >= A348981(n).
a(n) = A349171(n) - A018804(n). - Antti Karttunen, Nov 14 2021

A349142 a(n) = Sum_{d|n} psi(n/d) * A348507(d), where psi is Dedekind psi (A001615), A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 8, 1, 13, 1, 40, 11, 17, 1, 80, 1, 21, 19, 164, 1, 99, 1, 112, 23, 29, 1, 364, 17, 33, 77, 144, 1, 191, 1, 604, 31, 41, 27, 528, 1, 45, 35, 524, 1, 243, 1, 208, 165, 53, 1, 1424, 23, 187, 43, 240, 1, 597, 35, 684, 47, 65, 1, 1072, 1, 69, 209, 2084, 39, 347, 1, 304, 55, 327, 1, 2244, 1, 81, 221, 336, 39, 399
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A001615 with A348507.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)*p^(e - 1); psi[1] = 1; psi[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (s[#] - #)*psi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349142(n) = sumdiv(n,d,A001615(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A348507(d).
For all n >= 1, a(n) >= A347132(n) >= A348982(n).
a(n) = A349172(n) - A327251(n). - Antti Karttunen, Nov 14 2021

A349123 a(n) = Sum_{d|n} A038040(n/d) * A003415(d), where A038040(n) = n*tau(n), and A003415 is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 8, 1, 15, 1, 40, 12, 21, 1, 96, 1, 27, 24, 160, 1, 126, 1, 144, 30, 39, 1, 440, 20, 45, 90, 192, 1, 279, 1, 560, 42, 57, 36, 720, 1, 63, 48, 680, 1, 369, 1, 288, 234, 75, 1, 1680, 28, 270, 60, 336, 1, 810, 48, 920, 66, 93, 1, 1656, 1, 99, 306, 1792, 54, 549, 1, 432, 78, 531, 1, 3120, 1, 117, 330, 480, 54, 639
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

This sequence is the Dirichlet convolution of at least the following pairs of sequences:
- A003415 (the arithmetic derivative) with A038040,
- A000027 (the identity function) with A347130,
- A000203 (sigma) with A347131,
- A018804 with A319684,
- A060640 with A300251.

Crossrefs

Programs

  • Mathematica
    d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := DivisorSum[n, d[#]*(n/#)*DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A038040(n) = (n*numdiv(n));
    A349123(n) = sumdiv(n,d,A038040(d)*A003415(n/d));

Formula

a(n) = Sum_{d|n} A038040(d) * A003415(n/d).
a(n) = Sum_{d|n} d * A347130(n/d).
a(n) = Sum_{d|n} A000203(d) * A347131(n/d).
a(n) = Sum_{d|n} A018804(d) * A319684(n/d).
a(n) = Sum_{d|n} A060640(d) * A300251(n/d).
For all n >= 1, A348983(n) <= a(n) <= A349143(n).
a(n) = A003557(n) * A349124(n).
Showing 1-6 of 6 results.