cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349039 Square array T(n, k) read by antidiagonals, n, k >= 0; T(n, k) = n^2 - n*k + k^2.

Original entry on oeis.org

0, 1, 1, 4, 1, 4, 9, 3, 3, 9, 16, 7, 4, 7, 16, 25, 13, 7, 7, 13, 25, 36, 21, 12, 9, 12, 21, 36, 49, 31, 19, 13, 13, 19, 31, 49, 64, 43, 28, 19, 16, 19, 28, 43, 64, 81, 57, 39, 27, 21, 21, 27, 39, 57, 81, 100, 73, 52, 37, 28, 25, 28, 37, 52, 73, 100, 121, 91, 67, 49, 37, 31, 31, 37, 49, 67, 91, 121
Offset: 0

Views

Author

Rémy Sigrist, Nov 06 2021

Keywords

Comments

T(n, k) is the norm of the Eisenstein integer n + k*w (where w = -1/2 + sqrt(-3)/2 is a primitive cube root of unity).
All terms belong to A003136.

Examples

			Array T(n, k) begins:
  n\k|    0   1   2   3   4   5   6   7   8   9   10
  ---+----------------------------------------------
    0|    0   1   4   9  16  25  36  49  64  81  100
    1|    1   1   3   7  13  21  31  43  57  73   91
    2|    4   3   4   7  12  19  28  39  52  67   84
    3|    9   7   7   9  13  19  27  37  49  63   79
    4|   16  13  12  13  16  21  28  37  48  61   76
    5|   25  21  19  19  21  25  31  39  49  61   75
    6|   36  31  28  27  28  31  36  43  52  63   76
    7|   49  43  39  37  37  39  43  49  57  67   79
    8|   64  57  52  49  48  49  52  57  64  73   84
    9|   81  73  67  63  61  61  63  67  73  81   91
   10|  100  91  84  79  76  75  76  79  84  91  100
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := n^2 - n*k + k^2; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    T(n,k) = n^2 - n*k + k^2

Formula

T(n, k) = T(k, n).
T(n, 0) = T(n, n) = n^2.
T(n, k) = A048147(n, k) - A004247(n, k).
G.f.: (x - 5*x*y + y*(1 + y) + x^2*(1 + y^2))/((1 - x)^3*(1 - y)^3). - Stefano Spezia, Nov 08 2021