cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349054 Number of alternating strict compositions of n. Number of alternating (up/down or down/up) permutations of strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 155, 193, 255, 339, 443, 569, 841, 1019, 1365, 1743, 2295, 2879, 3785, 5151, 6417, 8301, 10625, 13567, 17229, 21937, 27509, 37145, 45425, 58345, 73071, 93409, 115797, 147391, 182151, 229553, 297061, 365625
Offset: 0

Views

Author

Gus Wiseman, Dec 21 2021

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
The case starting with an increase (or decrease, it doesn't matter in the enumeration) is counted by A129838.

Examples

			The a(1) = 1 through a(7) = 11 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)
            (2,1)  (3,1)  (2,3)  (2,4)    (2,5)
                          (3,2)  (4,2)    (3,4)
                          (4,1)  (5,1)    (4,3)
                                 (1,3,2)  (5,2)
                                 (2,1,3)  (6,1)
                                 (2,3,1)  (1,4,2)
                                 (3,1,2)  (2,1,4)
                                          (2,4,1)
                                          (4,1,2)
		

Crossrefs

Ranking sequences are put in parentheses below.
This is the strict case of A025047/A025048/A025049 (A345167).
This is the alternating case of A032020 (A233564).
The unordered case (partitions) is A065033.
The directed case is A129838.
A001250 = alternating permutations (A349051), complement A348615 (A350250).
A003242 = Carlitz (anti-run) compositions, complement A261983.
A011782 = compositions, unordered A000041.
A345165 = partitions without an alternating permutation (A345171).
A345170 = partitions with an alternating permutation (A345172).
A345192 = non-alternating compositions (A345168).
A345195 = non-alternating anti-run compositions (A345169).
A349800 = weakly but not strongly alternating compositions (A349799).
A349052 = weakly alternating compositions, complement A349053 (A349057).

Programs

  • Maple
    g:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(g(o-1+j, u-j), j=1..u))
        end:
    b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 2, 0), b(n-k, k)+b(n-k, k-1)))
        end:
    a:= n-> add(b(n, k)*g(k, 0), k=0..floor((sqrt(8*n+1)-1)/2))-1:
    seq(a(n), n=0..46);  # Alois P. Heinz, Dec 22 2021
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],wigQ]],{n,0,15}]

Formula

a(n) = 2 * A129838(n) - 1.
G.f.: Sum_{n>0} A001250(n)*x^(n*(n+1)/2)/Product_{k=1..n}(1-x^k).