A349109 Powerful numbers (A001694) whose sum of powerful divisors (including 1) is also powerful.
1, 64, 243, 441, 1764, 9800, 15552, 28224, 41616, 60516, 82369, 88200, 189728, 226576, 329476, 336200, 648675, 741321, 968256, 1317904, 1428025, 1707552, 1943236, 2039184, 2056356, 2381400, 2446227, 2798929, 2965284, 2986568, 4372281, 5189400, 5271616, 6508832
Offset: 1
Keywords
Examples
64 = 2^6 is a term since it is powerful and the sum of its powerful divisors, A183097(64) = 1 + 4 + 8 + 16 + 32 + 64 = 125 = 5^3 is also powerful.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..12154 (terms below 10^19)
Programs
-
Mathematica
powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;;,2]], # > 1 &]; f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := powQ[n] && powQ[s[n]]; Select[Range[7*10^6], q]
-
PARI
isok(n) = ispowerful(n) && ispowerful(sumdiv(n, d, d*ispowerful(d))); \\ Michel Marcus, Nov 08 2021
-
PARI
is(k) = {my(f = factor(k)); ispowerful(f) && ispowerful(prod(i = 1, #f~, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1) - f[i,1]));} \\ Amiram Eldar, Sep 14 2024
Comments