cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349109 Powerful numbers (A001694) whose sum of powerful divisors (including 1) is also powerful.

Original entry on oeis.org

1, 64, 243, 441, 1764, 9800, 15552, 28224, 41616, 60516, 82369, 88200, 189728, 226576, 329476, 336200, 648675, 741321, 968256, 1317904, 1428025, 1707552, 1943236, 2039184, 2056356, 2381400, 2446227, 2798929, 2965284, 2986568, 4372281, 5189400, 5271616, 6508832
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

Numbers k such that A112526(k) = A112526(A183097(k)) = 1.

Examples

			64 = 2^6 is a term since it is powerful and the sum of its powerful divisors, A183097(64) =  1 + 4 + 8 + 16 + 32 + 64 = 125 = 5^3 is also powerful.
		

Crossrefs

Programs

  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;;,2]], # > 1 &]; f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := powQ[n] && powQ[s[n]]; Select[Range[7*10^6], q]
  • PARI
    isok(n) = ispowerful(n) && ispowerful(sumdiv(n, d, d*ispowerful(d))); \\ Michel Marcus, Nov 08 2021
    
  • PARI
    is(k) = {my(f = factor(k)); ispowerful(f) && ispowerful(prod(i = 1, #f~, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1) - f[i,1]));} \\ Amiram Eldar, Sep 14 2024