A349115 a(n) = 8^n * P(n, 3*n), where P(n, x) is n-th Legendre polynomial.
1, 24, 3424, 926208, 369378816, 194988441600, 128184980586496, 100904418485993472, 92542260511611682816, 96909547417109671182336, 114095278582299648325582848, 149184455262733048487847395328, 214496285274348399077675463868416, 336346643957900669242934177071890432
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
- Wikipedia, Legendre polynomials.
Programs
-
Mathematica
Table[8^n*LegendreP[n, 3*n], {n, 0, 15}]
-
PARI
a(n) = 8^n*pollegendre(n, 3*n); \\ Michel Marcus, Nov 08 2021
Formula
a(n) ~ 2^(4*n) * 3^n * n^(n - 1/2) / sqrt(Pi).
Comments