A349126 Sum of A064989 and its Dirichlet inverse, where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.
2, 0, 0, 1, 0, 4, 0, 1, 4, 6, 0, 2, 0, 10, 12, 1, 0, 4, 0, 3, 20, 14, 0, 2, 9, 22, 8, 5, 0, 0, 0, 1, 28, 26, 30, 4, 0, 34, 44, 3, 0, 0, 0, 7, 12, 38, 0, 2, 25, 9, 52, 11, 0, 8, 42, 5, 68, 46, 0, 6, 0, 58, 20, 1, 66, 0, 0, 13, 76, 0, 0, 4, 0, 62, 18, 17, 70, 0, 0, 3, 16, 74, 0, 10, 78, 82, 92, 7, 0, 12, 110, 19, 116
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f1[p_, e_] := If[p == 2, 1, NextPrime[p, -1]^e]; a1[1] = 1; a1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := If[e == 1, If[p == 2, -1, -NextPrime[p, -1]], 0]; a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := a1[n] + a2[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
-
PARI
A349126(n) = (A064989(n)+A349125(n)); \\ Needs also code from A349125.
-
PARI
A349126(n) = if(1==n,2,-sumdiv(n, d, if(1==d||n==d,0,A064989(d)*A349125(n/d)))); \\ (This demonstrates the "cut convolution" formula) - Antti Karttunen, Nov 13 2021
Comments