cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349139 a(n) = Sum_{d|n} A322582(d) * A348507(n/d), where A322582(n) = n - A003958(n) and A348507(n) = A003959(n) - n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 8, 1, 2, 0, 18, 0, 2, 2, 41, 0, 22, 0, 22, 2, 2, 0, 98, 1, 2, 12, 26, 0, 40, 0, 172, 2, 2, 2, 148, 0, 2, 2, 130, 0, 48, 0, 34, 28, 2, 0, 426, 1, 34, 2, 38, 0, 158, 2, 162, 2, 2, 0, 278, 0, 2, 32, 645, 2, 64, 0, 46, 2, 56, 0, 706, 0, 2, 36, 50, 2, 72, 0, 590, 91, 2, 0, 350, 2, 2, 2, 226, 0, 348
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A322582 with A348507.
Question: Is a(n) >= A305809(n) for all n?

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p - 1)^e; s1[1] = 0; s1[n_] := n - Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p + 1)^e; s2[1] = 0; s2[n_] := Times @@ f2 @@@ FactorInteger[n] - n; a[n_] := DivisorSum[n, s1[#]*s2[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348507(n) = (A003959(n)-n);
    A349139(n) = sumdiv(n,d,A322582(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A322582(d) * A348507(n/d).