cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322582 a(n) = n - A003958(n), where A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 5, 6, 1, 10, 1, 8, 7, 15, 1, 14, 1, 16, 9, 12, 1, 22, 9, 14, 19, 22, 1, 22, 1, 31, 13, 18, 11, 32, 1, 20, 15, 36, 1, 30, 1, 34, 29, 24, 1, 46, 13, 34, 19, 40, 1, 46, 15, 50, 21, 30, 1, 52, 1, 32, 39, 63, 17, 46, 1, 52, 25, 46, 1, 68, 1, 38, 43, 58, 17, 54, 1, 76, 65, 42, 1, 72, 21, 44, 31, 78, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2018

Keywords

Comments

a(p*(n/p)) - (n/p) = (p-1)*a(n/p) holds for all prime divisors p of n, which can be seen by expanding the left hand side as p*(n/p) - A003958(p*(n/p)) - (n/p) = (p-1)*(n/p) - (p-1)*A003958(n/p) = (p-1)*((n/p) - A003958(n/p)) = (p-1)*a(n/p). This shows that this sequence gives a lower limit for arithmetic derivative (A003415) in the same way as A348507 gives an upper limit for it. - Antti Karttunen, Nov 07 2021
With n = Product_{i=1..k} p_i the prime factorization of n, if one constructs for each i a test with a probability of success equal to 1/p_i, and if the tests are independent, then a(n)/n is the probability that at least one of the k tests succeeds. - Luc Rousseau, Jan 14 2023

Crossrefs

Cf. A003415, A003958, A322581, A348507, A348928 [= gcd(n,a(n))], A348975 (difference from the arithmetic derivative).
Cf. A349139, A348980, A348981, A348982, A348983 (Dirichlet convolutions with other sequences).
Cf. A168065 (gives the arithmetic mean of this and A348507), A168066.

Programs

  • Mathematica
    a[1] = 0; a[n_] := n - Times @@ ((First[#] - 1)^Last[#] & /@ FactorInteger[n]); Array[a, 60] (* Amiram Eldar, Dec 17 2018 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    
  • PARI
    A020639(n) = if(1==n, n, (factor(n)[1, 1]));
    A322582(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= (spf-1)); (s); }; \\ (Compare to the similar programs given in A003415 and A348507) - Antti Karttunen, Nov 07 2021

Formula

a(n) = n - A003958(n).
From Antti Karttunen, Nov 07 2021: (Start)
a(n) = A003415(n) - A348975(n).
For all n >= 1, a(n) <= A003415(n) <= A348507(n).
For n > 1, a(n) = a(A032742(n))*(A020639(n)-1) + A032742(n). [See the comment above and compare with Reinhard Zumkeller's May 09 2011 formula for A003415]
(End)

A348507 a(n) = A003959(n) - n, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 19, 7, 8, 1, 24, 1, 10, 9, 65, 1, 30, 1, 34, 11, 14, 1, 84, 11, 16, 37, 44, 1, 42, 1, 211, 15, 20, 13, 108, 1, 22, 17, 122, 1, 54, 1, 64, 51, 26, 1, 276, 15, 58, 21, 74, 1, 138, 17, 160, 23, 32, 1, 156, 1, 34, 65, 665, 19, 78, 1, 94, 27, 74, 1, 360, 1, 40, 69, 104, 19, 90, 1, 406, 175, 44, 1, 204
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2021

Keywords

Comments

a(p*(n/p)) - (n/p) = (p+1)*a(n/p) holds for all prime divisors p of n, which can be seen by expanding the left hand side as (A003959(p*(n/p)) - (p*(n/p))) - (n/p) = (p+1)*A003959(n/p)-((p+1)*(n/p)) = (p+1)*(A003959(n/p)-(n/p)) = (p+1)*a(n/p). This implies that a(n) >= A003415(n) for all n. (See also comments in A348970). - Antti Karttunen, Nov 06 2021

Crossrefs

Cf. A348971 (Möbius transform) and A349139, A349140, A349141, A349142, A349143 (other Dirichlet convolutions).
Cf. also A168065 (the arithmetic mean of this and A322582), A168066.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    
  • PARI
    A020639(n) = if(1==n,n,(factor(n)[1, 1]));
    A348507(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= (1+spf)); (s); }; \\ (Compare this with similar programs given in A003415 and in A322582) - Antti Karttunen, Nov 06 2021

Formula

a(n) = A003959(n) - n.
a(n) = A348508(n) + n.
a(n) = A001065(n) + A348029(n).
From Antti Karttunen, Nov 06 2021: (Start)
a(n) = Sum_{d|n} A348971(d).
a(n) = A003415(n) + A348970(n).
For all n >= 1, A322582(n) <= A003415(n) <= a(n).
For n > 1, a(n) = a(A032742(n))*(1+A020639(n)) + A032742(n). [See the comments above, and compare this with Reinhard Zumkeller's May 09 2011 recursive formula for A003415] (End)
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065488 - 1. - Amiram Eldar, Jun 01 2025

A349129 a(n) = Sum_{d|n} A003958(d) * A003959(n/d), where A003958 is fully multiplicative with a(p) = (p-1), and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

1, 4, 6, 13, 10, 24, 14, 40, 28, 40, 22, 78, 26, 56, 60, 121, 34, 112, 38, 130, 84, 88, 46, 240, 76, 104, 120, 182, 58, 240, 62, 364, 132, 136, 140, 364, 74, 152, 156, 400, 82, 336, 86, 286, 280, 184, 94, 726, 148, 304, 204, 338, 106, 480, 220, 560, 228, 232, 118, 780, 122, 248, 392, 1093, 260, 528, 134, 442, 276
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A003958 with A003959.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((p + 1)^(e + 1) - (p - 1)^(e + 1))/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A349129(n) = sumdiv(n,d,A003958(d)*A003959(n/d));

Formula

Multiplicative with a(p^e) = ((p+1)^(e+1) - (p-1)^(e+1))/2. - Amiram Eldar, Nov 09 2021
For all n >= 1, A349130(n) <= a(n) <= A349170(n).
Showing 1-3 of 3 results.