cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349338 Dirichlet convolution of A000010 (Euler totient phi) with A080339 (characteristic function of noncomposite numbers).

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 7, 6, 8, 9, 11, 8, 13, 13, 14, 12, 17, 14, 19, 14, 20, 21, 23, 16, 24, 25, 24, 20, 29, 22, 31, 24, 32, 33, 34, 22, 37, 37, 38, 28, 41, 32, 43, 32, 38, 45, 47, 32, 48, 44, 50, 38, 53, 42, 54, 40, 56, 57, 59, 36, 61, 61, 54, 48, 64, 52, 67, 50, 68, 58, 71, 44, 73, 73, 68, 56, 76, 62, 79, 56, 72, 81
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Möbius transform of A230593.
The number of integers k from 1 to n such that gcd(n, k) is a noncomposite number. - Amiram Eldar, Jun 21 2025

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Boole[!CompositeQ[#]] * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 17 2021 *)
  • PARI
    A349338(n) = sumdiv(n, d, eulerphi(n/d)*((1==d)||isprime(d)));
    
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e = f[,2]); n * vecprod(apply(x -> 1-1/x, p)) * (1 + vecsum(apply(x -> 1/x, p - vector(#e, i, e[i] == 1)~)));} \\ Amiram Eldar, Jun 21 2025

Formula

a(n) = Sum_{d|n} A000010(n/d) * A080339(d).
a(n) = Sum_{d|n} A008683(n/d) * A230593(d).
a(n) = Sum_{d|n} A349435(n/d) * A348976(d).
a(n) = A000010(n) + A117494(n). [Because A117494 is the Möbius transform of A069359]
For all n >= 1, a(A005117(n)) = A348976(A005117(n)).
Sum_{k=1..n} a(k) ~ 3 * (1 + A085548) * n^2 / Pi^2. - Vaclav Kotesovec, Nov 20 2021