cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349377 Dirichlet convolution of A006369 with the Dirichlet inverse of A006368, where A006368 is the "amusical permutation", and A006369 is its inverse permutation.

Original entry on oeis.org

1, 0, 0, -1, 3, -5, 4, 2, -1, -11, 7, 7, 7, -14, -7, -3, 10, -2, 11, 16, -10, -25, 14, -6, 2, -25, 0, 18, 17, 11, 18, 4, -17, -36, -10, 20, 21, -39, -17, -18, 24, 12, 25, 34, -7, -50, 28, 2, 8, -15, -24, 34, 31, 3, -20, -16, -27, -61, 35, 30, 35, -64, -8, -5, -20, 23, 39, 50, -34, 6, 42, -44, 42, -75, -15, 52, -22, 23
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Obviously, convolving this sequence with A006368 gives its inverse A006369 from n >= 1 onward.

Crossrefs

Cf. A006368, A006369, A349351, A349376 (Dirichlet inverse), A349378 (sum with it).
Cf. also pairs A349613, A349614 and A349397, A349398 for similar constructions.

Programs

Formula

a(n) = Sum_{d|n} A006369(d) * A349351(n/d).
a(n) = A349378(n) - A349376(n).

A349352 Sum of A006368, "the amusical permutation", and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 9, 0, 12, 0, 9, 4, 24, 0, 24, 0, 30, 16, 27, 0, 42, 0, 30, 20, 48, 0, 21, 16, 60, 20, 51, 0, 54, 0, 45, 32, 78, 40, 30, 0, 84, 40, 51, 0, 90, 0, 78, 52, 102, 0, 96, 25, 90, 52, 84, 0, 90, 64, 57, 56, 132, 0, 27, 0, 138, 74, 99, 80, 138, 0, 111, 68, 114, 0, 114, 0, 168, 68, 132, 80, 150, 0, 138, 61, 186, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Comments

The first negative term is a(2520) = -918.

Crossrefs

Programs

  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA006368(n) = ((3*n)+(n%2))\(2+((n%2)*2));
    v349351 = DirInverseCorrect(vector(up_to,n,A006368(n)));
    A349351(n) = v349351[n];
    A349352(n) = (A006368(n)+A349351(n));

Formula

a(n) = A006368(n) + A349351(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A006368(d) * A349351(n/d).

A349368 Dirichlet inverse of A006369, the inverse permutation of "amusical permutation".

Original entry on oeis.org

1, -3, -2, 4, -7, 8, -9, -8, -2, 29, -15, -18, -17, 35, 18, 16, -23, 4, -25, -68, 22, 61, -31, 44, 16, 67, -2, -76, -39, -104, -41, -32, 38, 93, 79, 6, -49, 99, 42, 168, -55, -120, -57, -140, 10, 125, -63, -104, 16, -128, 58, -148, -71, 0, 137, 184, 62, 157, -79, 354, -81, 163, 14, 64, 151, -216, -89, -212, 78, -445
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Crossrefs

Cf. also A349351, A349376.

Programs

  • PARI
    A006369(n) = if(!(n%3),(2/3)*n,(1/3)*if(1==(n%3),((4*n)-1),((4*n)+1)));
    memoA349368 = Map();
    A349368(n) = if(1==n,1,my(v); if(mapisdefined(memoA349368,n,&v), v, v = -sumdiv(n,d,if(dA006369(n/d)*A349368(d),0)); mapput(memoA349368,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A006369(n/d) * a(d).
a(n) = A349369(n) - A006369(n).
Showing 1-3 of 3 results.