cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349356 Dirichlet convolution of A003959 with A097945 (Dirichlet inverse of A003958), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 18, 8, 4, 2, 12, 2, 4, 4, 54, 2, 16, 2, 12, 4, 4, 2, 36, 12, 4, 32, 12, 2, 8, 2, 162, 4, 4, 4, 48, 2, 4, 4, 36, 2, 8, 2, 12, 16, 4, 2, 108, 16, 24, 4, 12, 2, 64, 4, 36, 4, 4, 2, 24, 2, 4, 16, 486, 4, 8, 2, 12, 4, 8, 2, 144, 2, 4, 24, 12, 4, 8, 2, 108, 128, 4, 2, 24, 4, 4, 4, 36, 2, 32, 4, 12, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2021

Keywords

Comments

In Dirichlet ring this sequence works as a kind of replacement operator which replaces the factor A003958 with factor A003959. For example, convolving this with A349133 produces A349173.

Crossrefs

Cf. A003958, A003959, A097945, A349355 (Dirichlet inverse), A349357 (sum with it).
Cf. also A349133, A349173, A349381.

Programs

  • Mathematica
    f[p_, e_] := 2*(p + 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A097945(n) = (moebius(n)*eulerphi(n)); \\ Also Dirichlet inverse of A003958.
    A349356(n) = sumdiv(n,d,A003959(n/d)*A097945(d));

Formula

a(n) = Sum_{d|n} A003959(n/d) * A097945(d).
Multiplicative with a(p^e) = 2*(p+1)^(e-1). - Amiram Eldar, Nov 16 2021