cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349360 Number of positive integer pairs (s,t), with s,t <= n and s <= t such that either both s and t divide n or both do not.

Original entry on oeis.org

1, 3, 4, 7, 9, 13, 18, 20, 27, 31, 48, 42, 69, 65, 76, 81, 123, 99, 156, 126, 163, 181, 234, 172, 259, 263, 286, 274, 381, 289, 438, 372, 445, 475, 506, 423, 633, 605, 640, 564, 783, 631, 864, 762, 801, 913, 1038, 796, 1087, 1011, 1138, 1102, 1329, 1117, 1336, 1212, 1441
Offset: 1

Views

Author

Wesley Ivan Hurt, Nov 15 2021

Keywords

Examples

			a(5) = 9; There are 9 positive integer pairs (s,t), with s <= t such that both s and t divide 5 or both do not. They are (1,1), (1,5), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4), (5,5).
		

Crossrefs

Programs

  • Maple
    a:= n-> add(add(`if`(irem(n, j)>0 xor irem(n, i)=0, 1, 0), i=1..j), j=1..n):
    seq(a(n), n=1..57);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    a[n_] := Module[{d = DivisorSigma[0, n]}, n*(n+1)/2 - d*(n-d)]; Array[a, 100] (* Amiram Eldar, Feb 04 2025 *)
  • PARI
    a(n) = {my(d = numdiv(n)); n*(n+1)/2 - d*(n-d);} \\ Amiram Eldar, Feb 04 2025
  • Python
    from sympy import divisor_count
    def A349360(n):
        m = divisor_count(n)
        return m*(m-n) + n*(n+1)//2 # Chai Wah Wu, Nov 19 2021
    

Formula

a(n) = A184389(n) + A335567(n). - Alois P. Heinz, Nov 15 2021
a(n) = A000005(n)*(A000005(n)-n) + n(n+1)/2. - Chai Wah Wu, Nov 19 2021
a(p) = (p^2 - 3*p + 8)/2 for primes p. - Wesley Ivan Hurt, Nov 28 2021