A349387 Dirichlet convolution of A003961 with A055615 (Dirichlet inverse of n), where A003961 is fully multiplicative with a(p) = nextprime(p).
1, 1, 2, 3, 2, 2, 4, 9, 10, 2, 2, 6, 4, 4, 4, 27, 2, 10, 4, 6, 8, 2, 6, 18, 14, 4, 50, 12, 2, 4, 6, 81, 4, 2, 8, 30, 4, 4, 8, 18, 2, 8, 4, 6, 20, 6, 6, 54, 44, 14, 4, 12, 6, 50, 4, 36, 8, 2, 2, 12, 6, 6, 40, 243, 8, 4, 4, 6, 12, 8, 2, 90, 6, 4, 28, 12, 8, 8, 4, 54, 250, 2, 6, 24, 4, 4, 4, 18, 8, 20, 16, 18, 12, 6
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[p_,e_] := (q = NextPrime[p])^e - p * q^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A055615(n) = (n*moebius(n)); A349387(n) = sumdiv(n,d,A003961(n/d)*A055615(d));
Comments