A349388 Dirichlet convolution of A000027 with A346234 (Dirichlet inverse of A003961), where A003961 is fully multiplicative with a(p) = nextprime(p).
1, -1, -2, -2, -2, 2, -4, -4, -6, 2, -2, 4, -4, 4, 4, -8, -2, 6, -4, 4, 8, 2, -6, 8, -10, 4, -18, 8, -2, -4, -6, -16, 4, 2, 8, 12, -4, 4, 8, 8, -2, -8, -4, 4, 12, 6, -6, 16, -28, 10, 4, 8, -6, 18, 4, 16, 8, 2, -2, -8, -6, 6, 24, -32, 8, -4, -4, 4, 12, -8, -2, 24, -6, 4, 20, 8, 8, -8, -4, 16, -54, 2, -6, -16, 4, 4, 4
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^e - NextPrime[p] * p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A346234(n) = (moebius(n)*A003961(n)); A349388(n) = sumdiv(n,d,d*A346234(n/d));
Formula
a(n) = Sum_{d|n} d * A346234(n/d).
Multiplicative with a(p^e) = p^e - nextprime(p) * p^(e-1), where nextprime function is A151800. - Amiram Eldar, Nov 18 2021
Comments