A349392 Dirichlet convolution of A126760 with tau (number of divisors function).
1, 3, 3, 6, 4, 9, 5, 10, 6, 12, 6, 18, 7, 15, 12, 15, 8, 18, 9, 24, 15, 18, 10, 30, 16, 21, 10, 30, 12, 36, 13, 21, 18, 24, 26, 36, 15, 27, 21, 40, 16, 45, 17, 36, 24, 30, 18, 45, 26, 48, 24, 42, 20, 30, 35, 50, 27, 36, 22, 72, 23, 39, 30, 28, 40, 54, 25, 48, 30, 78, 26, 60, 27, 45, 48, 54, 44, 63, 29, 60, 15, 48
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
-
PARI
A126760(n) = {n&&n\=3^valuation(n, 3)<
A126760 A349392(n) = sumdiv(n,d,A126760(n/d)*numdiv(d));