A349426 Irregular triangle read by rows: T(n,k) is the number of arrangements of n labeled children with exactly k nontrivial rounds; n >= 3, 1 <= k <= floor(n/3).
3, 8, 30, 144, 90, 840, 840, 5760, 7280, 45360, 66528, 7560, 403200, 657720, 151200, 3991680, 7064640, 2356200, 43545600, 82285632, 34890240, 1247400, 518918400, 1035365760, 521080560, 43243200, 6706022400, 14013679680, 8034586560, 1059458400
Offset: 3
Examples
Triangle starts: [3] 3; [4] 8; [5] 30; [6] 144, 90; [7] 840, 840; [8] 5760, 7280; [9] 45360, 66528, 7560; [10] 403200, 657720, 151200; [11] 3991680, 7064640, 2356200; [12] 43545600, 82285632, 34890240, 1247400; [13] 518918400, 1035365760, 521080560, 43243200; [14] 6706022400, 14013679680, 8034586560, 1059458400; ... For n = 6, there are 144 ways to make one round and 90 ways to make two rounds.
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)
Links
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
Crossrefs
Programs
-
Mathematica
f[k_, n_] := n! SeriesCoefficient[(1 - x)^(-x t) Exp[-x^2 t], {x, 0, n}, {t, 0, k}] Table[f[k, n], {n, 2, 14}, {k, 1, Floor[n/3]}]
Formula
E.g.f.: (1 - x)^(-x*t) * exp(-x^2*t).
Comments