A349429 Expansion of e.g.f. cos(5*x)*cos(9*x)/cos(15*x) (even powers only).
1, 119, 129361, 353851559, 1806970377121, 14829833979504599, 178506068100424343281, 2962559872323037509279239, 64836735740991992791046187841, 1809194806338763806974577192135479, 62691937652492245112191045131692230801, 2641170468091820745160358034750851940073319
Offset: 0
Keywords
Links
- Ruth Lawrence and Don Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999), no. 1, 93-107.
Programs
-
Maple
A349429 := n -> (-900)^n*(euler(2*n, 1/30) + euler(2*n, 11/30)) / 2: seq(A349429(n), n = 0..11); # Peter Luschny, Nov 17 2021
-
Mathematica
m = 13; Take[CoefficientList[Series[Cos[5*x]*Cos[9*x]/Cos[15*x], {x, 0, 2*m}], x] * Range[0, 2*m]!, {1, 2*m + 1, 2}] (* Amiram Eldar, Nov 17 2021 *)
-
Sage
x = PowerSeriesRing(QQ, 'x', default_prec=30).gen() f = cos(5*x) * cos(9*x) / cos(15*x) [cf for cf in f.egf_to_ogf() if cf]
Formula
E.g.f.: cos(5*x) * cos(9*x) / cos(15*x).
From Peter Luschny, Nov 17 2021: (Start)
a(n) = (-900)^n*(E(2*n, 1/30) + E(2*n, 11/30)) / 2, where E(n, x) are the Euler polynomials.
a(n) ~ c*(2*n)!*(30/Pi)^(2*n) where c = 0.64812598778325714671749857159... (End)
Comments