A349264
Generalized Euler numbers, a(n) = n!*[x^n](sec(4*x)*(sin(4*x) + 1)).
Original entry on oeis.org
1, 4, 16, 128, 1280, 16384, 249856, 4456448, 90767360, 2080374784, 52975108096, 1483911200768, 45344872202240, 1501108249821184, 53515555843342336, 2044143848640217088, 83285910482761809920, 3605459138582973251584, 165262072909347030040576, 7995891855149741436305408
Offset: 0
Exponential generating functions of generalized Euler numbers in context:
egf1 = sec(1*x)*(sin(x) + 1).
[A000111, A000364, A000182]
egf2 = sec(2*x)*(sin(x) + cos(x)).
[A001586, A000281, A000464]
egf3 = sec(3*x)*(sin(2*x) + cos(x)).
[A007289, A000436, A000191]
egf4 = sec(4*x)*(sin(4*x) + 1).
[A349264, A000490, A000318]
egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)).
[A349265, A000187, A000320]
egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)).
[A001587, A000192, A000411]
egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)).
[A349266, A064068, A064072]
egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)).
[A349267, A064069, A064073]
egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2.
[A349268, A064070, A064074]
- Matthew House, Table of n, a(n) for n = 0..389
- William Y. C. Chen, Neil J. Y. Fan, Jeffrey Y. T. Jia, The generating function for the Dirichlet series Lm(s), Mathematics of Computation, Vol. 81, No. 278, pp. 1005-1023, April 2012.
- Ruth Lawrence and Don Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999), no. 1, 93-107.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
- D. Shanks, Corrigendum: Generalized Euler and class numbers, Math. Comp. 22, (1968) 699.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
-
sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
-
m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
-
seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021
A002437
a(n) = A000364(n) * (3^(2*n+1) + 1)/4.
Original entry on oeis.org
1, 7, 305, 33367, 6815585, 2237423527, 1077270776465, 715153093789687, 626055764653322945, 698774745485355051847, 968553361387420436695025, 1632180870878422847476890007, 3286322019402928956112227932705, 7791592461957309952817483706344167, 21485762937086358457367440231243675985
Offset: 0
a(4) = A000364(4) * (3^(2*4+1)+1)/4 = 1385 * (3^9+1)/4 = 1385 * 4921 = 6815585.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
- J. W. L. Glaisher, Messenger of Math., 28 (1898), 36-79, see esp. p. 51.
- L. B. W. Jolley, Summation of Series, Dover, 2nd ed. (1961)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, vol. 6, no. 1, #R21, (1999).
-
Q:=proc(n) option remember; if n=0 then RETURN(1); else RETURN(expand((u^2+1)*diff(Q(n-1),u)+u*Q(n-1))); fi; end;
[seq(subs(u=sqrt(3),Q(2*n)),n=0..25)];
-
Table[Abs[EulerE[2 n]] (3^(2 n + 1) + 1) / 4, {n, 0, 30}] (* Vincenzo Librandi, Feb 07 2017 *)
A352977
Expansion of e.g.f. cos(2x) cos(3x) / cos(6x) (even powers only).
Original entry on oeis.org
1, 23, 3985, 1743623, 1424614945, 1870693029623, 3602792061891505, 9566946196183630823, 33500193836861731481665, 149565522713623779723211223, 829235405016410370201483113425, 5589623533324449496004527793434823, 45017811997394066193946619670380594785
Offset: 0
- D. Choi, S. Lim and R. C. Rhoades, Mock modular forms and quantum modular forms, Proc. Amer. Math. Soc. 144 (2016), 2337-2349. (See page 2341.)
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices. IV. The Mass Formula, Proc. Roy. Soc. London Ser. A 419 (1988), no. 1857, 259-286. (See table 6.)
- M. Monks, Number theoretic properties of generating functions related to Dyson's rank for partitions into distinct parts, Proc. Amer. Math. Soc. 138 (2010), no. 2, 481-494. (See page 485.)
- D. Shanks and J. W. Wrench, The calculation of certain Dirichlet series, Math. Comp. 17 (1963), 136-154. (See line 6 of Table 1.)
-
egf := (cos(x) + cos(5*x))*sec(6*x) / 2: ser := series(egf, x, 32):
seq(n!*coeff(ser, x ,n), n = 0..24, 2); # Peter Luschny, Apr 13 2022
-
my(x='x+O('x^30)); select(x->(x>0), Vec(serlaplace(cos(2*x)*cos(3*x)/cos(6*x)))) \\ Michel Marcus, Apr 13 2022
-
x = PowerSeriesRing(QQ, 'x', default_prec=30).gen()
f = cos(2*x) * cos(3*x) / cos(6*x)
[cf for cf in f.egf_to_ogf() if cf]
Showing 1-3 of 3 results.
Comments