cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349448 Dirichlet convolution of A000265 (odd part of n) with A349134 (Dirichlet inverse of Kimberling's paraphrases).

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 2, 0, 5, 0, 6, 0, 0, 0, 8, 0, 9, 0, 0, 0, 11, 0, 6, 0, 4, 0, 14, 0, 15, 0, 0, 0, 0, 0, 18, 0, 0, 0, 20, 0, 21, 0, -2, 0, 23, 0, 12, 0, 0, 0, 26, 0, 0, 0, 0, 0, 29, 0, 30, 0, -3, 0, 0, 0, 33, 0, 0, 0, 35, 0, 36, 0, -4, 0, 0, 0, 39, 0, 8, 0, 41, 0, 0, 0, 0, 0, 44, 0, 0, 0, 0, 0, 0, 0, 48, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2021

Keywords

Crossrefs

Cf. A000265, A003602, A349134, A349447 (Dirichlet inverse).
Cf. also A349432, A349445.

Programs

  • Mathematica
    k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; kinv[1] = 1; kinv[n_] := kinv[n] = -DivisorSum[n, kinv[#]*k[n/#] &, # < n &]; a[n_] := DivisorSum[n, # / 2^IntegerExponent[#, 2] * kinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    memoA349134 = Map();
    A349134(n) = if(1==n,1,my(v); if(mapisdefined(memoA349134,n,&v), v, v = -sumdiv(n,d,if(dA003602(n/d)*A349134(d),0)); mapput(memoA349134,n,v); (v)));
    A349448(n) = sumdiv(n,d,A000265(d)*A349134(n/d));

Formula

a(n) = Sum_{d|n} A000265(d) * A349134(n/d).
From Bernard Schott, Dec 18 2021: (Start)
If p is an odd prime, a(p) = (p-1)/2.
If n is even, a(n) = 0. (End)