cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A349564 Dirichlet convolution of A011782 [2^(n-1)] with A349450 [Dirichlet inverse of right-shifted Catalan numbers].

Original entry on oeis.org

1, 1, 2, 2, 2, -14, -68, -308, -1178, -4366, -15772, -56780, -203916, -734772, -2658088, -9662208, -35292134, -129514026, -477376556, -1766739436, -6563071972, -24464170892, -91478369336, -343051227304, -1289887370136, -4861912851116, -18367285963792, -69533416706328, -263747683314904, -1002241679797688
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Dirichlet convolution with A034731 gives A034729.

Crossrefs

Cf. A000108, A011782, A349452, A349563 (Dirichlet inverse).

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#] * CatalanNumber[n/# - 1] &, # < n &]; a[n_] := DivisorSum[n, 2^(# - 1) * s[n/#] &]; Array[a, 30] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A000108(n) = (binomial(2*n, n)/(n+1));
    memoA349450 = Map();
    A349450(n) = if(1==n,1,my(v); if(mapisdefined(memoA349450,n,&v), v, v = -sumdiv(n,d,if(dA000108((n/d)-1)*A349450(d),0)); mapput(memoA349450,n,v); (v)));
    A349564(n) = sumdiv(n,d,2^(d-1)*A349450(n/d));

Formula

a(n) = Sum_{d|n} 2^(d-1) * A349450(n/d).

A349452 Dirichlet inverse of A011782, 2^(n-1).

Original entry on oeis.org

1, -2, -4, -4, -16, -16, -64, -104, -240, -448, -1024, -1904, -4096, -7936, -16256, -32272, -65536, -129888, -262144, -522176, -1048064, -2093056, -4194304, -8379520, -16776960, -33538048, -67106880, -134184704, -268435456, -536801024, -1073741824, -2147352224, -4294959104, -8589672448, -17179867136, -34359197184
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#] * 2^(n/# - 1) &, # < n &]; Array[a, 36] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A011782(n) = (2^(n-1));
    memoA349452 = Map();
    A349452(n) = if(1==n,1,my(v); if(mapisdefined(memoA349452,n,&v), v, v = -sumdiv(n,d,if(dA011782(n/d)*A349452(d),0)); mapput(memoA349452,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A011782(n/d) * a(d).
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} 2^(k-1) * A(x^k). - Ilya Gutkovskiy, Feb 23 2022

A349449 Dirichlet inverse of Catalan numbers, when started from A000108(1): 1, 2, 5, 14, 42, ...

Original entry on oeis.org

1, -2, -5, -10, -42, -112, -429, -1382, -4837, -16628, -58786, -207404, -742900, -2672724, -9694425, -35351906, -129644790, -477618082, -1767263190, -6564052564, -24466262730, -91482328496, -343059613650, -1289903299544, -4861946399688, -18367350100552, -69533550867509, -263747941045736, -1002242216651368
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Crossrefs

Cf. A000108.
Cf. also A349450.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#] * CatalanNumber[n/#] &, # < n &]; Array[a, 30] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A000108(n) = binomial(2*n, n)/(n+1);
    memoA349449 = Map();
    A349449(n) = if(1==n,1,my(v); if(mapisdefined(memoA349449,n,&v), v, v = -sumdiv(n,d,if(dA000108(n/d)*A349449(d),0)); mapput(memoA349449,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A000108(n/d) * a(d).
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} Catalan(k) * A(x^k). - Ilya Gutkovskiy, Feb 23 2022

A349451 Dirichlet inverse of Fibonacci numbers, when started from A000045(1): 1, 1, 2, 3, 5, 8, 13, 21, ...

Original entry on oeis.org

1, -1, -2, -2, -5, -4, -13, -16, -30, -45, -89, -122, -233, -351, -590, -944, -1597, -2496, -4181, -6640, -10894, -17533, -28657, -46000, -75000, -120927, -196290, -317018, -514229, -830580, -1346269, -2176288, -3524222, -5699693, -9227335, -14924550, -24157817, -39079807, -63245054, -102320320, -165580141, -267890844
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#] * Fibonacci[n/#] &, # < n &]; Array[a, 42] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    memoA349451 = Map();
    A349451(n) = if(1==n,1,my(v); if(mapisdefined(memoA349451,n,&v), v, v = -sumdiv(n,d,if(dA349451(d),0)); mapput(memoA349451,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A000045(n/d) * a(d).
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} Fibonacci(k) * A(x^k). - Ilya Gutkovskiy, Feb 23 2022

A349453 Dirichlet inverse of A133494, 3^(n-1).

Original entry on oeis.org

1, -3, -9, -18, -81, -189, -729, -2052, -6480, -19197, -59049, -175446, -531441, -1589949, -4781511, -14335704, -43046721, -129097152, -387420489, -1162141182, -3486771279, -10459998909, -31381059609, -94142073420, -282429529920, -847285420797, -2541865710960, -7625587899366, -22876792454961, -68630348286531
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#] * 3^(n/# - 1) &, # < n &]; Array[a, 30] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A133494(n) = max(1, 3^(n-1));
    memoA349453 = Map();
    A349453(n) = if(1==n,1,my(v); if(mapisdefined(memoA349453,n,&v), v, v = -sumdiv(n,d,if(dA133494(n/d)*A349453(d),0)); mapput(memoA349453,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A133494(n/d) * a(d).
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} 3^(k-1) * A(x^k). - Ilya Gutkovskiy, Feb 23 2022
Showing 1-5 of 5 results.