cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349454 Number T(n,k) of endofunctions on [n] with exactly k fixed points, all of which are isolated; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 8, 3, 0, 1, 81, 32, 6, 0, 1, 1024, 405, 80, 10, 0, 1, 15625, 6144, 1215, 160, 15, 0, 1, 279936, 109375, 21504, 2835, 280, 21, 0, 1, 5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1, 134217728, 51883209, 10077696, 1312500, 129024, 10206, 672, 36, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 30 2021

Keywords

Examples

			Triangle T(n,k) begins:
        1;
        0,       1;
        1,       0,      1;
        8,       3,      0,     1;
       81,      32,      6,     0,    1;
     1024,     405,     80,    10,    0,   1;
    15625,    6144,   1215,   160,   15,   0,  1;
   279936,  109375,  21504,  2835,  280,  21,  0, 1;
  5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1;
  ...
		

Crossrefs

Column k=0 gives A065440.
Row sums give A204042.
Main diagonal and first lower diagonal give A000012, A000004.
T(n+1,n-1) gives A000217.
T(n+3,n) gives A130809.
T(n+3,n-1) gives A102741 for n>=1.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*(n-k-1)^(n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);

Formula

T(n,k) = binomial(n,k) * (n-k-1)^(n-k).
From Mélika Tebni, Apr 02 2023: (Start)
E.g.f. of column k: -x / (LambertW(-x)*(1+LambertW(-x)))*x^k / k!.
Sum_{k=0..n} k^k*T(n,k) = A217701(n). (End)