A349454 Number T(n,k) of endofunctions on [n] with exactly k fixed points, all of which are isolated; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 1, 0, 1, 8, 3, 0, 1, 81, 32, 6, 0, 1, 1024, 405, 80, 10, 0, 1, 15625, 6144, 1215, 160, 15, 0, 1, 279936, 109375, 21504, 2835, 280, 21, 0, 1, 5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1, 134217728, 51883209, 10077696, 1312500, 129024, 10206, 672, 36, 0, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 1, 0, 1; 8, 3, 0, 1; 81, 32, 6, 0, 1; 1024, 405, 80, 10, 0, 1; 15625, 6144, 1215, 160, 15, 0, 1; 279936, 109375, 21504, 2835, 280, 21, 0, 1; 5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
T:= (n, k)-> binomial(n, k)*(n-k-1)^(n-k): seq(seq(T(n, k), k=0..n), n=0..10);
Formula
T(n,k) = binomial(n,k) * (n-k-1)^(n-k).
From Mélika Tebni, Apr 02 2023: (Start)
E.g.f. of column k: -x / (LambertW(-x)*(1+LambertW(-x)))*x^k / k!.
Sum_{k=0..n} k^k*T(n,k) = A217701(n). (End)