A349478 a(n) is the least number k such that the sequence of elements of the continued fraction of the harmonic mean of the divisors of k is palindromic with length n, or -1 if no such k exists.
1, 15, 8, 545, 21, 1131, 16, 98124, 28676, 1109305, 28672, 16837500, 1231932, 477021580, 6129711, 734420331, 441972042, 4343866215, 42741916965, 96692841558, 2193739177
Offset: 1
Examples
The elements of the continued fractions of the harmonic mean of the divisors of the terms are: n a(n) elements -- ----------- ------------------------------------------- 1 1 1 2 15 2,2 3 8 2,7,2 4 545 3,3,3,3 5 21 2,1,1,1,2 6 1131 5,2,1,1,2,5 7 16 2,1,1,2,1,1,2 8 98124 17,1,1,3,3,1,1,17 9 28676 6,1,2,3,1,3,2,1,6 10 1109305 6,1,1,1,1,1,1,1,1,6 11 28672 11,2,1,1,1,10,1,1,1,2,11 12 16837500 24,1,1,1,2,1,1,2,1,1,1,24 13 1231932 18,1,1,1,1,1,8,1,1,1,1,1,18 14 477021580 38,2,3,1,1,1,1,1,1,1,1,3,2,38 15 6129711 14,2,2,1,1,1,1,9,1,1,1,1,2,2,14 16 734420331 20,2,1,1,1,1,1,1,1,1,1,1,1,1,2,20 17 441972042 15,1,3,2,2,1,1,2,15,2,1,1,2,2,3,1,15 18 4343866215 18,1,1,7,1,8,2,1,1,1,1,2,8,1,7,1,1,18 19 42741916965 94,1,1,7,4,1,1,1,1,3,1,1,1,1,4,7,1,1,94 20 96692841558 28,2,4,1,1,4,1,1,1,6,6,1,1,1,4,1,1,4,2,28 21 2193739177 19,1,1,1,3,1,1,1,1,1,9,1,1,1,1,1,3,1,1,1,19
Programs
-
Mathematica
cfhm[n_] := ContinuedFraction[DivisorSigma[0, n]/DivisorSigma[-1, n]]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i, cf}, While[c < len && n < nmax, cf = cfhm[n]; If[PalindromeQ[cf] && (i = Length[cf]) <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; TakeWhile[s, # > 0 &]]; seq[11, 10^7]
Comments