cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349479 Irregular triangle read by rows: T(n,k) = S1(n,k)*2^k, where S1(n,k) is the associated Stirling number of the first kind (cf. A008306) (n >= 0, 0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 0, 0, 2, 0, 4, 0, 12, 12, 0, 48, 80, 0, 240, 520, 120, 0, 1440, 3696, 1680, 0, 10080, 29232, 19040, 1680, 0, 80640, 256896, 211456, 40320, 0, 725760, 2493504, 2429280, 705600, 30240, 0, 7257600, 26547840, 29430720, 11285120, 1108800, 0, 79833600, 307992960, 378595008, 177580480, 27720000, 665280
Offset: 0

Views

Author

Steven Finch, Nov 19 2021

Keywords

Comments

T(n,k) is the number of cycle-colored n-derangements possessing exactly k cycles; two colors are available.

Examples

			Triangle begins:
[0] 1;
[1] 0;
[2] 0,     2;
[3] 0,     4;
[4] 0,    12,     12;
[5] 0,    48,     80;
[6] 0,   240,    520,    120;
[7] 0,  1440,   3696,   1680;
[8] 0, 10080,  29232,  19040,  1680;
[9] 0, 80640, 256896, 211456, 40320;
...
		

Crossrefs

Row sums give A087981.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          2*x*b(n-j)*binomial(n-1, j-1)*(j-1)!, j=2..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..floor(n/2)))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Nov 19 2021
  • Mathematica
    S1[0, 0] = 1; S1[, 0] = 0; S1[n, k_] /; k > Quotient[n, 2] = 0;
    S1[n_, k_] := S1[n, k] = (n-1)*(S1[n-1, k] + S1[n-2, k-1]);
    T[n_, k_] := S1[n, k]*2^k;
    Table[T[n, k], {n, 0, 14}, {k, 0, Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Dec 28 2021 *)