A349495
Numbers p^2*q, p (2,3).
28, 44, 63, 76, 92, 117, 124, 172, 188, 236, 268, 275, 279, 284, 316, 332, 387, 412, 428, 508, 524, 549, 556, 603, 604, 652, 668, 711, 716, 764, 775, 796, 844, 873, 892, 908, 927, 956, 1004, 1025, 1052, 1084, 1132, 1228, 1244, 1251, 1324, 1359, 1388, 1413, 1421
Offset: 1
Keywords
Examples
28 = 2^2*7, 2 divides 7-1 = 6 and 2^2 does not divide 7-1 = 6, hence 28 is a term. 63 = 3^2*7, 3 divides 7-1 = 6 and 3^2 does not divide 7-1 = 6, hence 63 is another term.
References
- Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.
Programs
-
Mathematica
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {2, 1} && IntegerExponent[p[[2]] - 1, p[[1]]] == 1]; Select[Range[28, 1500], q] (* Amiram Eldar, Dec 16 2021 *)
-
PARI
isok(m) = if (m==12, return(0)); my(f=factor(m)); if (f[,2] == [2,1]~, my(p=f[1,1], q=f[2,1]); (((q-1) % p) == 0) && (((q-1) % p^2) != 0);); \\ Michel Marcus, Dec 16 2021
-
Python
from sympy import factorint def ok(n): if n < 13: return False f = factorint(n) sig, p, q = list(f.values()), min(f), max(f) return sig == [2, 1] and (q-1)%p == 0 and (q-1)%p**2 != 0 print([m for m in range(1422) if ok(m)]) # Michael S. Branicky, Dec 16 2021
Extensions
More terms from Alois P. Heinz, Dec 15 2021
Comments