cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349511 a(n) = Sum_{k=n^2..3*n^2-3*n+1} binomial(n^3, k).

Original entry on oeis.org

1, 1, 162, 129426405, 16891063036609237658, 18250180714636047151855346313907038815, 1291091703201646062849529792547495285890126156377393082996087554, 15934719293558661243731879701489946881532638280926268234547722632676376681552065231576737967805230
Offset: 0

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is an upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Zhang et al.).

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n^3,k],{k,n^2,3n^2-3n+1}]; Array[a,8,0]

Formula

A349508(n)/A349509(n) <= A319510(n) < a(n) < A349512(n) (see Corollary 7 in Zhang et al., 2021).
a(n) = binomial(n^3, n^2)*2F1([1, n^2-n^3], [1+n^2], -1) - binomial(n^3, 2-3*n+3*n^2)*2F1([1, 2-3*n+3*n^2-n^3], [3(1-n+n^2)], -1), where 2F1 is the hypergeometric function.
a(n) ~ exp(3*n^2 - 9*n/2 + 3) * n^(3*n*(n-1)) / (sqrt(2*Pi) * 3^(3*n^2 - 3*n + 3/2)). - Vaclav Kotesovec, Dec 05 2021