cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A349509 a(n) is the denominator of binomial(n^3 + 6*n^2 - 6*n + 2, n^3 - 1)/n^3.

Original entry on oeis.org

1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is the denominator of an upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Chang et al. and Zhang et al.).
Conjecture: 1 and 3 are the only terms that appear in this sequence.
This conjecture is correct, see formula. - Kevin Ryde, Jul 01 2023

Crossrefs

Cf. A349506, A349507, A349508 (numerators), A349510, A349511, A349512.
Cf. A363739 (run lengths), A349929 (indices of 3's).

Programs

  • Mathematica
    a[n_]:=Denominator[Binomial[n^3+6n^2-6n+2,n^3-1]/n^3]; Array[a,90]
  • PARI
    \\ See links.
  • Python
    from math import gcd, comb
    def A349509(n): return n**3//gcd(comb(n*(n*(n + 6) - 6) + 2,6*n*(n-1)+3),n**3) # Chai Wah Wu, Dec 06 2021
    

Formula

A349508(n)/a(n) <= A349510(n) < A349511(n) < A349512(n) (see Corollary 7 in Zhang et al., 2021).
A349508(n)/a(n) ~ 2^(-4 + 6*n - 6*n^2)*3^(-7/2 + 6*n - 6*n^2)*e^(-75 + 233/n + 18*n + 6*n^2)*n^(-1 - 6*n + 6*n^2)/sqrt(Pi).
a(n) = 1 if n=1 or any x[i] + y[i] >= 3 where x and y are the ternary digits of n^3 = Sum x[i]*3^i and 6*n^2 - 6*n + 3 = Sum y[i]*3^i; and a(n) = 3 otherwise. - Kevin Ryde, Jul 01 2023

A349506 a(n) is the numerator of n!^(2*n)/(n^n^2).

Original entry on oeis.org

1, 1, 64, 6561, 63403380965376, 1000000000000, 10061319724179153710638694400000000000000, 9396559338406702410023114843902587890625, 528450425551613768181656289451784661530463698944000000000000000000, 13597557929083423616920569866317288159544321459878738801559053666747416576
Offset: 1

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is the numerator of a lower bound of the number of the vertices of the polytope of stochastic semi-magic n X n X n cubes, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Ahmed et al. and Zhang et al.).

Crossrefs

Programs

  • Mathematica
    Table[Numerator[n!^(2n)/(n^n^2)],{n,10}]
  • PARI
    a(n) = numerator(n!^(2*n)/n^n^2); \\ Michel Marcus, Nov 22 2021

Formula

a(n)/A349507(n) ~ n^(-n^2)*(exp(-n)*n^(n-1/2)*(1+12*n))^(2*n)*(Pi/72)^n.

A349507 a(n) is the denominator of n!^(2*n)/(n^n^2).

Original entry on oeis.org

1, 1, 27, 256, 30517578125, 531441, 378818692265664781682717625943, 1208925819614629174706176, 8727963568087712425891397479476727340041449, 867361737988403547205962240695953369140625, 12527829399838427440107579247354215251149392000034969484678615956504532008683916069945559954314411495091
Offset: 1

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is the denominator of a lower bound of the number of the vertices of the polytope of stochastic semi-magic n X n X n cubes, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Ahmed et al. and Zhang et al.).

Crossrefs

Programs

  • Mathematica
    Table[Denominator[n!^(2n)/(n^n^2)],{n,11}]
  • PARI
    a(n) = denominator(n!^(2*n)/n^n^2); \\ Michel Marcus, Nov 22 2021

Formula

A349506(n)/a(n) ~ n^(-n^2)*(exp(-n)*n^(n-1/2)*(1+12*n))^(2*n)*(Pi/72)^n.

A349508 a(n) is the numerator of binomial(n^3 + 6*n^2 - 6*n + 2, n^3 - 1)/n^3.

Original entry on oeis.org

1, 21318, 111399602430962720, 219754881677312748254868619396977023490, 91574665590547903212939476569574243557076290573519342040406738188187312
Offset: 1

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is the numerator of an upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Chang et al. and Zhang et al.).

Crossrefs

Cf. A349506, A349507, A349509 (denominators), A349510, A349511, A349512.

Programs

  • Mathematica
    a[n_]:=Numerator[Binomial[n^3+6n^2-6n+2,n^3-1]/n^3]; Array[a,6]

Formula

a(n)/A349509(n) <= A349510(n) < A349511(n) < A349512(n) (see Corollary 7 in Zhang et al., 2021).
a(n)/A349509(n) ~ 2^(-4 + 6*n - 6*n^2)*3^(-7/2 + 6*n - 6*n^2)*e^(-75 + 233/n + 18*n + 6*n^2)*n^(-1 - 6*n + 6*n^2)/sqrt(Pi).

A349510 a(n) = binomial(n^3-floor(((n-1)^3+1)/2), 3*n^2-3*n+1) + binomial(n^3-floor(((n-1)^3+2)/2), 3*n^2-3*n+1).

Original entry on oeis.org

0, 1, 2, 10395, 709721037200, 11641222531417506431654250, 94310884171276301089942905465465961965897600, 1948497841630989653689709780233830548909045113177792777217829860522656, 192558458967017735390472923791964989275151544601992192306693834632003663346431678074519409150869009600
Offset: 0

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is a sharp upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Li et al. and Zhang et al.).

Crossrefs

Programs

  • Mathematica
    a[n_]:=Binomial[n^3-Floor[((n-1)^3+1)/2],3n^2-3n+1]+Binomial[n^3-Floor[((n-1)^3+2)/2],3n^2-3n+1]; Array[a,9,0]

Formula

A349508(n)/A349509(n) <= a(n) < A349511(n) < A349512(n) (see Corollary 7 in Zhang et al., 2021).
a(n) ~ (n/6)^(3*n*(n-1))*exp(-6+13/n+3*n^2)/(3*sqrt(6*Pi)).

A349512 a(n) = binomial(n^3 + 3*n^2 - 3*n + 1, n^3).

Original entry on oeis.org

1, 2, 6435, 4154246671960, 5397234129638871133346507775, 80240648651400365471854502514501453704175376562496, 54198670627270688013781273396239242514947489935351300645194042280183395324517200
Offset: 0

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is a sharp upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Zhang et al.).

Crossrefs

Programs

  • Mathematica
    a[n_]:=Binomial[n^3+3n^2-3n+1,n^3]; Array[a,8,0]

Formula

A349508(n)/A349509(n) <= A349510(n) < A349511(n) < a(n) (see Corollary 7 in Zhang et al., 2021).
a(n) ~ C*3^(3(n - n^2))*exp(3*(3*n/2 + n^2))*n^(3(-n + n^2)), where C = e^(-15)/sqrt(54*Pi).
Showing 1-6 of 6 results.