A349538 The number of pseudo-Pythagorean triples (which allow negative or 0 sides) on a 2D lattice that are on or inside a circle of radius n.
1, 5, 9, 13, 17, 29, 33, 37, 41, 45, 57, 61, 65, 77, 81, 93, 97, 109, 113, 117, 129, 133, 137, 141, 145, 165, 177, 181, 185, 197, 209, 213, 217, 221, 233, 245, 249, 261, 265, 277, 289, 301, 305, 309, 313, 325, 329, 333, 337, 341, 361, 373, 385, 397, 401, 413, 417, 421, 433, 437, 449
Offset: 0
Keywords
Examples
Sides (coordinates) a(n) ------------------------------------------------------------------------------ (0,0) 1 (-1,0)(0,-1)(0,1)(1,0) 5 (-2,0)(0,-2)(0,2)(2,0) 9 (-3,0)(0,-3)(0,3)(3,0) 13 (-4,0)(0,-4)(0,4)(4,0) 17 (-5,0)(-4,-3)(-4,3)(-3,-4)(-3,4)(0,-5)(0,5)(3,-4)(3,4)(4,-3)(4,3)(5,0) 29 (-6,0)(0,-6)(0,6)(6,0) 33 (-7,0)(0,-7)(0,7)(7,0) 37 (-8,0)(0,-8)(0,8)(8,0) 41 (-9,0)(0,-9)(0,9)(9,0) 45 (-10,0)(-8,-6)(-8,6)(-6,-8)(-6,8)(0,-10)(0,10)(6,-8)(6,8)(8,-6)(8,6)(10,0) 57 (-11,0)(0,-11)(0,11)(11,0) 61 (-12,0)(0,-12)(0,12)(12,0) 65
Links
- Alexander Kritov, Source code
Programs
-
C
/* See links */
-
PARI
f(n) = if(n==0, return(1)); my(f=factor(n)); 4*prod(i=1, #f~, if(f[i, 1]%4==1, 2*f[i, 2]+1, 1)); \\ A046109 a(n) = sum(k=0, n, f(k)); \\ Michel Marcus, Nov 27 2021
Comments