A349545 Triangular array read by rows: T(n,k) = A002884(k)*2^((n-k)(n-k-1)), n >= 0, 0 <= k <= n.
1, 1, 1, 4, 1, 6, 64, 4, 6, 168, 4096, 64, 24, 168, 20160, 1048576, 4096, 384, 672, 20160, 9999360, 1073741824, 1048576, 24576, 10752, 80640, 9999360, 20158709760, 4398046511104, 1073741824, 6291456, 688128, 1290240, 39997440, 20158709760, 163849992929280
Offset: 0
Examples
Triangle begins: 1; 1, 1; 4, 1, 6; 64, 4, 6, 168; 4096, 64, 24, 168, 20160; 1048576, 4096, 384, 672, 20160, 9999360; ... T(3,1)=4 because we have: { I = {{0, 0, 0}, {0, 0, 0}, {0, 0, 1}}, A= {{0, 0, 0}, {1, 0, 0}, {0, 0, 1}}, B= {{0, 1, 0}, {0, 0, 0}, {0, 0, 1}}, C= {{1, 1, 0}, {1, 1, 0}, {0, 0, 1}} } where I is idempotent of rank 1 and A^2=B^2=C^2=I.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Encyclopedia of Mathematics, Periodic semigroup
Programs
-
Mathematica
q = 2; nn = 7;Table[Table[Product[q^d - q^i, {i, 0, d - 1}] q^((n - d) (n - d - 1)), {d, 0,n}], {n, 0, nn}] // Grid
-
PARI
\\ here b(n) is A002884(n). b(n) = {prod(i=2, n, 2^i-1)<
Andrew Howroyd, Nov 22 2021
Comments