cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349573 a(n) = A048673(n) - n, where A048673(n) = (A003961(n)+1) / 2, and A003961(n) shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

0, 0, 0, 1, -1, 2, -1, 6, 4, 1, -4, 11, -4, 3, 3, 25, -7, 20, -7, 12, 7, -2, -8, 44, 0, 0, 36, 22, -13, 23, -12, 90, 0, -5, 4, 77, -16, -3, 4, 55, -19, 41, -19, 15, 43, -2, -20, 155, 12, 24, -3, 25, -23, 134, -9, 93, 1, -11, -28, 98, -27, -6, 75, 301, -5, 32, -31, 18, 4, 46, -34, 266, -33, -12, 48, 28, -5, 50, -37
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2021

Keywords

Crossrefs

Cf. A048674 (positions of zeros), A246351 (negative terms), A246281 (nonpositive terms), A246352 (nonnegative terms), A246282 (positive terms), A269860 (even terms), A269861 (odd terms).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; a[1] = 0; a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2 - n; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
    A349573(n) = (A048673(n)-n);

Formula

a(n) = A048673(n) - n.
a(n) = Sum_{d|n, dA349571(n/d).

A349572 Dirichlet convolution of A000027 (identity function) with the Dirichlet inverse of A048673.

Original entry on oeis.org

1, 0, 0, -1, 1, -2, 1, -4, -4, -3, 4, -4, 4, -5, -6, -12, 7, -6, 7, -7, -10, -6, 8, -6, -4, -8, -24, -11, 13, -2, 12, -32, -12, -9, -14, -4, 16, -11, -16, -13, 19, -2, 19, -16, -22, -14, 20, -4, -18, -15, -18, -20, 23, -10, -14, -19, -22, -15, 28, 14, 27, -18, -34, -80, -20, -8, 31, -25, -28, -8, 34, 14, 33, -20
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2021

Keywords

Comments

Also Dirichlet convolution of A349384 with A349388.

Crossrefs

Cf. A000027, A048673, A323893, A349384, A349388, A349571 (Dirichlet inverse).
Cf. also A349397.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * sinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
    memoA323893 = Map();
    A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(dA048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v)));
    A349572(n) = sumdiv(n,d,d*A323893(n/d));

Formula

a(n) = Sum_{d|n} d * A323893(n/d).
a(n) = Sum_{d|n} A349384(d) * A349388(n/d).
Showing 1-2 of 2 results.