cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373036 Triangle read by rows: T(n,k) is the number of edge subsets E of the n X k grid graph such that E contains a path between the top left node and the bottom right node, 1 <= k <= n.

Original entry on oeis.org

1, 1, 7, 1, 40, 1135, 1, 216, 28942, 3329245, 1, 1144, 707239, 358911148, 167176484530, 1, 6016, 16963938, 37502829018, 74568672196498, 140386491543732211, 1, 31552, 403490839, 3856945416544, 32485805235240376, 256258754970108999490, 1946586793700869420041631
Offset: 1

Views

Author

Pontus von Brömssen, May 20 2024

Keywords

Comments

T(n,k)/2^A151890(n-1,k-1) is the probability that the top left and bottom right vertices of the n X k grid graph are still connected after each edge has been independently deleted with probability 1/2.
Terms in the n-th row/column satisfies a linear recurrence with constant coefficients (probably of order A000245(n) or less).

Examples

			Triangle begins:
  1;
  1,    7;
  1,   40,     1135;
  1,  216,    28942,     3329245;
  1, 1144,   707239,   358911148,   167176484530;
  1, 6016, 16963938, 37502829018, 74568672196498, 140386491543732211;
  ...
		

Crossrefs

Cf. A000245, A151890, A349594 (2nd row/column), A349596 (3rd row/column) A365629 (4th row/column), A373037 (main diagonal).

A349596 Number of edge subsets E of the 3 X n grid graph such that E contains a path between the top left node and the bottom right node.

Original entry on oeis.org

1, 40, 1135, 28942, 707239, 16963938, 403490839, 9560192914, 226115020735, 5343643837642, 126235739481031, 2981618243157330, 70418570359871599, 1663054542669694138, 39275207266744385815, 927528207559891996258, 21904544495171662611391, 517297785739589326153482
Offset: 1

Views

Author

Eugene Nonko, Nov 22 2021

Keywords

Comments

a(n)/2^(5*n-3) is the probability that the top left and bottom right vertices of the 3 X n grid graph are still connected after each edge has been independently deleted with probability 1/2. - Pontus von Brömssen, May 25 2024

Crossrefs

Cf. A349594.
Third row/column of A373036.

Formula

a(n) = 54*a(n-1) - 1077*a(n-2) + 10642*a(n-3) - 57954*a(n-4) + 180960*a(n-5) - 324992*a(n-6) + 325632*a(n-7) - 165888*a(n-8) + 32768*a(n-9) for n >= 10. - Pontus von Brömssen, May 25 2024
G.f.: (1 - 14*x + 52*x^2 + 90*x^3 - 960*x^4 + 2096*x^5 - 1792*x^6 + 512*x^7)/((1 - 15*x + 48*x^2 - 32*x^3)*(1 - 39*x + 444*x^2 - 2078*x^3 + 4224*x^4 - 3648*x^5 + 1024*x^6)). - Eugene Nonko, Nov 15 2024

Extensions

a(11)-a(18) from Martin Ehrenstein, Dec 13 2021
Name clarified by Eugene Nonko, Nov 18 2024

A365629 Number of 4 X n mazes that can be navigated from the top left corner to the bottom right corner.

Original entry on oeis.org

1, 216, 28942, 3329245, 358911148, 37502829018, 3856945416544, 393396697543644, 39951066751274152, 4047887027105625168, 409638762069161924728, 41428094401248851559736, 4188336537335577744595384, 423360539638841208001947048, 42789587016771330584001089176
Offset: 1

Views

Author

Eugene Nonko, Oct 25 2023

Keywords

Comments

If the maze can be navigated in multiple ways, it is still only counted once.
Sample 4 X 3 maze that can be navigated from the top left corner to the bottom right corner:
+---+---+---+---+
| S---+ | |
+---+ | +---+ +
| +---+ | |
+ +---+ | +---+
| | +---F |
+---+---+---+---+
Sample 4 X 3 maze that cannot be navigated from the top left corner to the bottom right corner:
+---+---+---+---+
| S |
+---+ +---+ +
| | | |
+ +---+ +---+
| | F |
+---+---+---+---+
a(n)/2^(7*n-4) is the probability that the top left and bottom right vertices of the 4 X n grid graph are still connected after each edge has been independently deleted with probability 1/2. - Pontus von Brömssen, May 25 2024

Crossrefs

Fourth row/column of A373036.

Formula

a(n) = 342*a(n-1) - 50227*a(n-2) + 4267092*a(n-3) - 237414878*a(n-4) + 9263866752*a(n-5) - 264710439296*a(n-6) + 5705797123488*a(n-7) - 94777393717760*a(n-8) + 1232582325433344*a(n-9) - 12699878523256832*a(n-10) + 104584257652924416*a(n-11) - 692664147070386176*a(n-12) + 3704337209642582016*a(n-13) - 16028068661845557248*a(n-14) + 56107328210955927552*a(n-15) - 158569903559869988864*a(n-16) + 360259507824309043200*a(n-17) - 653476498517472051200*a(n-18) + 937026705910470279168*a(n-19) - 1047482862825245769728*a(n-20) + 895397884025628524544*a(n-21) - 569457883581280944128*a(n-22) + 258763464527314944000*a(n-23) - 78758950283455234048*a(n-24) + 14267403619509731328*a(n-25) - 1152921504606846976*a(n-26) for n >= 27. - Pontus von Brömssen, May 25 2024

Extensions

a(8) and beyond from Pontus von Brömssen, May 25 2024
Showing 1-3 of 3 results.