cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Eugene Nonko

Eugene Nonko's wiki page.

Eugene Nonko has authored 3 sequences.

A365629 Number of 4 X n mazes that can be navigated from the top left corner to the bottom right corner.

Original entry on oeis.org

1, 216, 28942, 3329245, 358911148, 37502829018, 3856945416544, 393396697543644, 39951066751274152, 4047887027105625168, 409638762069161924728, 41428094401248851559736, 4188336537335577744595384, 423360539638841208001947048, 42789587016771330584001089176
Offset: 1

Author

Eugene Nonko, Oct 25 2023

Keywords

Comments

If the maze can be navigated in multiple ways, it is still only counted once.
Sample 4 X 3 maze that can be navigated from the top left corner to the bottom right corner:
+---+---+---+---+
| S---+ | |
+---+ | +---+ +
| +---+ | |
+ +---+ | +---+
| | +---F |
+---+---+---+---+
Sample 4 X 3 maze that cannot be navigated from the top left corner to the bottom right corner:
+---+---+---+---+
| S |
+---+ +---+ +
| | | |
+ +---+ +---+
| | F |
+---+---+---+---+
a(n)/2^(7*n-4) is the probability that the top left and bottom right vertices of the 4 X n grid graph are still connected after each edge has been independently deleted with probability 1/2. - Pontus von Brömssen, May 25 2024

Crossrefs

Fourth row/column of A373036.

Formula

a(n) = 342*a(n-1) - 50227*a(n-2) + 4267092*a(n-3) - 237414878*a(n-4) + 9263866752*a(n-5) - 264710439296*a(n-6) + 5705797123488*a(n-7) - 94777393717760*a(n-8) + 1232582325433344*a(n-9) - 12699878523256832*a(n-10) + 104584257652924416*a(n-11) - 692664147070386176*a(n-12) + 3704337209642582016*a(n-13) - 16028068661845557248*a(n-14) + 56107328210955927552*a(n-15) - 158569903559869988864*a(n-16) + 360259507824309043200*a(n-17) - 653476498517472051200*a(n-18) + 937026705910470279168*a(n-19) - 1047482862825245769728*a(n-20) + 895397884025628524544*a(n-21) - 569457883581280944128*a(n-22) + 258763464527314944000*a(n-23) - 78758950283455234048*a(n-24) + 14267403619509731328*a(n-25) - 1152921504606846976*a(n-26) for n >= 27. - Pontus von Brömssen, May 25 2024

Extensions

a(8) and beyond from Pontus von Brömssen, May 25 2024

A349596 Number of edge subsets E of the 3 X n grid graph such that E contains a path between the top left node and the bottom right node.

Original entry on oeis.org

1, 40, 1135, 28942, 707239, 16963938, 403490839, 9560192914, 226115020735, 5343643837642, 126235739481031, 2981618243157330, 70418570359871599, 1663054542669694138, 39275207266744385815, 927528207559891996258, 21904544495171662611391, 517297785739589326153482
Offset: 1

Author

Eugene Nonko, Nov 22 2021

Keywords

Comments

a(n)/2^(5*n-3) is the probability that the top left and bottom right vertices of the 3 X n grid graph are still connected after each edge has been independently deleted with probability 1/2. - Pontus von Brömssen, May 25 2024

Crossrefs

Cf. A349594.
Third row/column of A373036.

Formula

a(n) = 54*a(n-1) - 1077*a(n-2) + 10642*a(n-3) - 57954*a(n-4) + 180960*a(n-5) - 324992*a(n-6) + 325632*a(n-7) - 165888*a(n-8) + 32768*a(n-9) for n >= 10. - Pontus von Brömssen, May 25 2024
G.f.: (1 - 14*x + 52*x^2 + 90*x^3 - 960*x^4 + 2096*x^5 - 1792*x^6 + 512*x^7)/((1 - 15*x + 48*x^2 - 32*x^3)*(1 - 39*x + 444*x^2 - 2078*x^3 + 4224*x^4 - 3648*x^5 + 1024*x^6)). - Eugene Nonko, Nov 15 2024

Extensions

a(11)-a(18) from Martin Ehrenstein, Dec 13 2021
Name clarified by Eugene Nonko, Nov 18 2024

A349594 Number of 2 X n mazes that can be navigated from the top left corner to the bottom right corner.

Original entry on oeis.org

1, 7, 40, 216, 1144, 6016, 31552, 165312, 865792, 4533760, 23739904, 124305408, 650874880, 3408031744, 17844699136, 93436084224, 489237741568, 2561682178048, 13413142233088, 70232124948480, 367740181282816, 1925512588951552, 10082114810675200, 52790638512439296
Offset: 1

Author

Eugene Nonko, Nov 22 2021

Keywords

Comments

a(n)/2^(3*n-2) is the probability that the top left and bottom right vertices of the 2 X n grid graph (or ladder graph) are still connected after each edge has been independently deleted with probability 1/2. - Pontus von Brömssen, May 25 2024

Examples

			For n = 2 the a(2) = 7 solutions are as follows:
+---+---+   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+
|       |   |   |   |   |       |   |       |   |       |   |       |   |   |   |
+   +   +   +   +   +   +   +---+   +   +   +   +---+   +   +---+   +   +   +---+
|       |   |       |   |       |   |   |   |   |       |   |   |   |   |       |
+---+---+   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+
		

Crossrefs

Cf. A349596.
Second row/column of A373036.

Programs

  • Haskell
    import Data.List
    m = [[2, 0, 2], [0, 2, 2], [1, 1, 4]]
    (.*.) :: Num a => [[a]] -> [[a]] -> [[a]]
    (.*.) a b = [[ sum $ zipWith (*) ar bc | bc <- (transpose b)] | ar <- a ]
    (.^.) :: Num a => [[a]] -> Integer -> [[a]]
    m .^. 0 = [ [ if i == j then 1 else 0 | i <- [1 .. n] ] | j <- [1 .. n] ] where n = length m
    m .^. n | even n = let m' = m .^. (n `div` 2) in m' .*. m'
            | otherwise = m .*. (m .^. (n - 1))
    a349594 n = (z !! 0 !! 1) + (z !! 0 !! 2) + (z !! 2 !! 1) + (z !! 2 !! 2) where z = m .^. (n - 1)
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <8|-16|8>>^n. <<0, 1, 7>>)[1, 1]:
    seq(a(n), n=1..24);  # Alois P. Heinz, Dec 09 2021
  • Mathematica
    LinearRecurrence[{8, -16, 8}, {1, 7, 40}, 24] (* Jean-François Alcover, Jan 29 2025 *)
  • PARI
    Vec((1 - x)/((1 - 2*x)*(1 - 6*x + 4*x^2)) + O(x^30)) \\ Andrew Howroyd, Nov 22 2021
    

Formula

G.f.: (1 - x)/((1 - 2*x)*(1 - 6*x + 4*x^2)). - Andrew Howroyd, Nov 22 2021
a(n) = ((5-3*sqrt(5))*(3-sqrt(5))^n + (5+3*sqrt(5))*(3+sqrt(5))^n - 10*2^n) / 40. - Eugene Nonko, Nov 07 2024

Extensions

Terms a(18) and beyond from Andrew Howroyd, Nov 22 2021