cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349601 E.g.f. satisfies: A(x) * log(A(x)) = exp(x*A(x)^2) - 1.

Original entry on oeis.org

1, 1, 4, 32, 391, 6462, 134974, 3412187, 101323674, 3457536144, 133333945461, 5734792007584, 272197255745078, 14133109419794601, 796883164532719216, 48489515568651113516, 3167153388603620859695, 221021628292403019655418
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(2*n - k + 1)^(k-1) * StirlingS2[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 25 2021 *)
  • PARI
    a(n) = sum(k=0, n, (2*n-k+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (2*n-k+1)^(k-1) * Stirling2(n,k).
a(n) ~ s * n^(n-1) / (sqrt(2*(1 + 2*r*s^2) - 2/(1 + log(s))) * exp(n) * r^n), where r = 0.2229533052706631261980294005821031136702825459439... and s = 1.759796045489338472919926226485178994146849909897... are roots of the system of equations exp(r*s^2) = 1 + s*log(s), 2*exp(r*s^2)*r*s = 1 + log(s). - Vaclav Kotesovec, Nov 25 2021

A349602 E.g.f. satisfies: A(x) * log(A(x)) = 1 - exp(-x*A(x)^2).

Original entry on oeis.org

1, 1, 2, 2, -43, -668, -5908, -1209, 1399400, 37121106, 508366819, -3012861630, -444910083132, -15407930598279, -249403814792546, 5359691081465462, 589889204153846141, 23861630070579997032, 379819221897309026072, -21971010821241361939769
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k)*(2*n - k + 1)^(k - 1)*StirlingS2[n, k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(2*n-k+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (2*n-k+1)^(k-1) * Stirling2(n,k).
Showing 1-2 of 2 results.