cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349624 Dirichlet convolution of A326042 with A055615 (Dirichlet inverse of n), where A326042(n) = A064989(sigma(A003961(n))).

Original entry on oeis.org

1, -1, -1, 9, -4, 1, -5, -19, 23, 4, -6, -9, -9, 5, 4, 43, -14, -23, -17, -36, 5, 6, -17, 19, 29, 9, -65, -45, -28, -4, -14, -43, 6, 14, 20, 207, -27, 17, 9, 76, -34, -5, -41, -54, -92, 17, -39, -43, 71, -29, 14, -81, -47, 65, 24, 95, 17, 28, -30, 36, -48, 14, -115, 981, 36, -6, -63, -126, 17, -20, -40, -437, -70, 27
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2021

Keywords

Comments

Multiplicative because A055615 and A326042 are.

Crossrefs

Cf. A000203, A003961, A055615, A064989, A326042, A349625 (Dirichlet inverse), A349626.
Cf. also A348736, A349573.

Programs

  • Mathematica
    f1[p_, e_] := NextPrime[p]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; s[n_] := s2[DivisorSigma[1, s1[n]]]; a[n_] := DivisorSum[n, # * MoebiusMu[#] * s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A055615(n) = (n*moebius(n));
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    A349624(n) = sumdiv(n,d,A055615(n/d)*A326042(d));

Formula

a(n) = Sum_{d|n} A055615(d) * A326042(n/d).
For all n >= 1, Sum_{d|n, dA326042(n) - n = -A348736(n).