cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354365 Numerators of Dirichlet inverse of primorial deflation fraction A319626(n) / A319627(n).

Original entry on oeis.org

1, -2, -3, 0, -5, 3, -7, 0, 0, 10, -11, 0, -13, 14, 5, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -5, -31, 0, 33, 34, 7, 0, -37, 38, 39, 0, -41, -21, -43, 0, 0, 46, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 58, -59, 0, -61, 62, 0, 0, 65, -33, -67, 0, 69, -14, -71, 0, -73, 74, 0, 0, 11, -39, -79, 0, 0, 82
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Comments

Because the ratio n / A064989(n) = A319626(n) / A319627(n) is multiplicative, so is also its Dirichlet inverse (which also is a sequence of rational numbers). This sequence gives the numerators when presented in its lowest terms, while A354366 gives the denominators. See the examples.

Examples

			The ratio a(n)/A354366(n) for n = 1..22: 1, -2, -3/2, 0, -5/3, 3, -7/5, 0, 0, 10/3, -11/7, 0, -13/11, 14/5, 5/2, 0, -17/13, 0, -19/17, 0, 21/10, 22/7.
		

Crossrefs

Cf. A013929 (positions of 0's), A055615, A319626, A319627, A354350.
Cf. A354366 (denominators).
Cf. also A349629, A354351, A354827.

Programs

  • PARI
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A354365(n) = numerator((moebius(n)*n)/A064989(n));

Formula

a(n) = A055615(n) / gcd(A055615(n), A064989(n)).

A349630 Denominators of the Dirichlet inverse of the abundancy index, sigma(n)/n.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 1, 3, 5, 11, 3, 13, 7, 5, 1, 17, 2, 19, 5, 21, 11, 23, 1, 5, 13, 1, 7, 29, 5, 31, 1, 11, 17, 35, 6, 37, 19, 39, 1, 41, 7, 43, 11, 5, 23, 47, 1, 7, 10, 17, 13, 53, 1, 55, 1, 57, 29, 59, 5, 61, 31, 21, 1, 65, 11, 67, 17, 23, 35, 71, 1, 73, 37, 15, 19, 77, 13, 79, 1, 1, 41, 83, 21, 85, 43, 29, 1, 89
Offset: 1

Views

Author

Antti Karttunen, Nov 27 2021

Keywords

Crossrefs

Cf. A349629 (numerators).

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = -DivisorSum[n, f[#] * DivisorSigma[1, n/#] * #/n &, # < n &]; Denominator @ Array[f, 100] (* Amiram Eldar, Nov 28 2021 *)
  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA349630(n) = denominator(vDirInv_of_Abi[n]);
Showing 1-2 of 2 results.