cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354366 Denominators of Dirichlet inverse of primorial deflation fraction A319626(n) / A319627(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 1, 1, 3, 7, 1, 11, 5, 2, 1, 13, 1, 17, 1, 10, 7, 19, 1, 1, 11, 1, 1, 23, 1, 29, 1, 14, 13, 3, 1, 31, 17, 22, 1, 37, 5, 41, 1, 1, 19, 43, 1, 1, 1, 26, 1, 47, 1, 21, 1, 34, 23, 53, 1, 59, 29, 1, 1, 33, 7, 61, 1, 38, 3, 67, 1, 71, 31, 1, 1, 5, 11, 73, 1, 1, 37, 79, 1, 39, 41, 46, 1, 83, 1, 55, 1, 58
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Comments

Equally, denominators of Dirichlet inverse of fraction n / A064989(n). See also comments in A354365.

Crossrefs

Cf. A055615, A064989, A319626, A319627, A354360 (positions of 1's).
Cf. A354365 (numerators).
Cf. also A349630.

Programs

  • PARI
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A354366(n) = denominator((moebius(n)*n)/A064989(n));

Formula

a(n) = A064989(n) / gcd(A055615(n), A064989(n)).

A349629 Numerators of the Dirichlet inverse of the abundancy index, sigma(n)/n.

Original entry on oeis.org

1, -3, -4, 1, -6, 2, -8, 0, 1, 9, -12, -2, -14, 12, 8, 0, -18, -1, -20, -3, 32, 18, -24, 0, 1, 21, 0, -4, -30, -12, -32, 0, 16, 27, 48, 1, -38, 30, 56, 0, -42, -16, -44, -6, -2, 36, -48, 0, 1, -3, 24, -7, -54, 0, 72, 0, 80, 45, -60, 4, -62, 48, -8, 0, 84, -24, -68, -9, 32, -72, -72, 0, -74, 57, -4, -10, 96, -28
Offset: 1

Views

Author

Antti Karttunen, Nov 27 2021

Keywords

Comments

Because the ratio A000203(n)/n [known as the abundancy index of n] is multiplicative, so is also its Dirichlet inverse. This sequence gives the numerator of that ratio when presented in its lowest terms, while A349630 gives the denominators. See the examples.

Examples

			The ratio a(n)/A349630(n) for n = 1..15: 1/1, -3/2, -4/3, 1/2, -6/5, 2/1, -8/7, 0/1, 1/3, 9/5, -12/11, -2/3, -14/13, 12/7, 8/5.
		

Crossrefs

Cf. A349630 (denominators).

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = -DivisorSum[n, f[#] * DivisorSigma[1, n/#] * #/n &, # < n &]; Numerator @ Array[f, 100] (* Amiram Eldar, Nov 28 2021 *)
  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA349629(n) = numerator(vDirInv_of_Abi[n]);
Showing 1-2 of 2 results.