A349655
E.g.f. satisfies: A(x)^3 * log(A(x)) = exp(x) - 1.
Original entry on oeis.org
1, 1, -4, 50, -981, 26632, -924526, 39114343, -1952373450, 112321286934, -7318049389727, 532602419776770, -42825957593127770, 3770431528821292441, -360734325565272740984, 37267364164988863692782, -4134667018838875759388749, 490302545213321842575157140
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0,
(1-3*m)^(m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 29 2022
-
a[n_] := Sum[(-3*k + 1)^(k - 1) * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 27 2021 *)
-
a(n) = sum(k=0, n, (-3*k+1)^(k-1)*stirling(n, k, 2));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(3*(exp(x)-1))/3)))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (-3*k+1)^(k-1)*x^k/prod(j=1, k, 1-j*x)))
A349652
E.g.f. satisfies: A(x)^(A(x)^2) = 1/(1 - x).
Original entry on oeis.org
1, 1, -2, 18, -220, 3880, -86868, 2376836, -76735216, 2856604464, -120457684320, 5675047644288, -295430737430112, 16840861797433440, -1043322313406139648, 69798144929293516800, -5014888682767294232832, 385130588783629323238656
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = (1/(1 - x))^(1/A[x]^2) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = (-1)^(n-1)*sum(k=0, n, (2*k-1)^(k-1)*stirling(n, k, 1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=0, N, (2*k-1)^(k-1)*log(1-x)^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((-2*log(1-x)/lambertw(-2*log(1-x)))^(1/2)))
A349651
E.g.f. satisfies: A(x)^(A(x)^3) = 1 + x.
Original entry on oeis.org
1, 1, -6, 81, -1776, 54240, -2125122, 101631558, -5739235128, 373745355984, -27572590788480, 2272763834553168, -207013811669644680, 20647997125333476912, -2238256520486195804280, 262010379635788799196360, -32939968662220720559744448
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = (1 + x)^(1/A[x]^3) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = (-1)^(n-1)*sum(k=0, n, (3*k-1)^(k-1)*abs(stirling(n, k, 1)));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=0, N, (3*k-1)^(k-1)*(-log(1+x))^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((3*log(1+x)/lambertw(3*log(1+x)))^(1/3)))
A349657
E.g.f. satisfies: A(x)^3 * log(A(x)) = 1 - exp(-x).
Original entry on oeis.org
1, 1, -6, 80, -1751, 53402, -2088528, 99680667, -5617170700, 365003288652, -26868393676609, 2209797209486528, -200828403704351068, 19986049281174575497, -2161617056877509895386, 252467067400866652634004, -31668302130310076212791823
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[(Exp[x]-1)/(Exp[x]*A[x]^3)]+O[x]^(nmax+1)//Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = (-1)^(n-1)*sum(k=0, n, (3*k-1)^(k-1)*stirling(n, k, 2));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(3*(1-exp(-x)))/3)))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (-3*k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))
Showing 1-4 of 4 results.