cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349682 a(n) = A000292(6*n + 1) where A000292 are the tetrahedral numbers.

Original entry on oeis.org

1, 84, 455, 1330, 2925, 5456, 9139, 14190, 20825, 29260, 39711, 52394, 67525, 85320, 105995, 129766, 156849, 187460, 221815, 260130, 302621, 349504, 400995, 457310, 518665, 585276, 657359, 735130, 818805, 908600, 1004731, 1107414, 1216865, 1333300, 1456935, 1587986
Offset: 0

Views

Author

Ralf Steiner, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nterms=50;Table[36n^3+36n^2+11n+1,{n,0,nterms-1}] (* Paolo Xausa, Nov 25 2021 *)
  • PARI
    a(n) = subst(m*(m+1)*(m+2)/6, 'm, 6*n+1); \\ Michel Marcus, Dec 16 2021
    
  • Python
    def A349682(n): return n*(n*(36*n + 36) + 11) + 1 # Chai Wah Wu, Dec 27 2021

Formula

a(n) = 1 + 11*n + 36*n^2 + 36*n^3 = (1 + 2*n)*(1 + 3*n)*(1 + 6*n).
G.f.: (1 + 80*x + 125*x^2 + 10*x^3)/(1 - x)^4. - Stefano Spezia, Nov 29 2021
From Elmo R. Oliveira, Aug 22 2025: (Start)
E.g.f.: exp(x)*(1 + 83*x + 144*x^2 + 36*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
From Amiram Eldar, Aug 31 2025: (Start)
Sum_{n>=0} 1/a(n) = Pi/(4*sqrt(3)) + 2*log(2) - 3*log(3)/4.
Sum_{n>=0} (-1)^n/a(n) = (3/4 - 1/sqrt(3))*Pi + sqrt(3)*log(2 + sqrt(3))/2 - log(2). (End)