cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349687 Numbers whose numerator and denominator of their abundancy index are both Fibonacci numbers.

Original entry on oeis.org

1, 2, 6, 15, 24, 26, 28, 84, 90, 96, 120, 270, 330, 496, 672, 1335, 1488, 1540, 1638, 8128, 24384, 27280, 44109, 68200, 131040, 447040, 523776, 18506880, 22256640, 33550336, 36197280, 38257095, 65688320, 91963648, 95472000, 100651008, 102136320, 176432256, 197308800
Offset: 1

Views

Author

Amiram Eldar, Nov 25 2021

Keywords

Comments

This sequence includes all the perfect numbers (A000396), 3-perfect numbers (A005820) and 5-perfect numbers (A046060).
The deficient terms, 1, 2, 15, 26, 1335, 44109, 38257095, ..., have an abundancy index which is a ratio of two consecutive Fibonacci numbers, 1/1, 3/2, 8/5, 21/13, 144/89, 610/377, 46368/28657, ..., which approaches the golden ratio phi = 1.618... (A001622) as the numerators and denominators get larger.

Examples

			2 is a term since sigma(2)/2 = 3/2 = Fibonacci(4)/Fibonacci(3).
15 is a term since sigma(15)/15 = 8/5 = Fibonacci(6)/Fibonacci(5).
		

Crossrefs

Subsequences: A000396, A005820, A046060.
Similar sequences: A069070, A216780, A247086, A348658.

Programs

  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[{5 n^2 - 4, 5 n^2 + 4}]; ai[n_] := DivisorSigma[1, n]/n; q[n_] := fibQ[Numerator[(ain = ai[n])]] && fibQ[Denominator[ain]]; Select[Range[10^6], q]
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isok(n) = my(q=sigma(n)/n); isfib(numerator(q)) && isfib(denominator(q)); \\ Michel Marcus, Nov 25 2021