cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349699 Triangular numbers with exactly 10 divisors.

Original entry on oeis.org

496, 3321, 13203, 195625, 780625, 2883601, 11527201, 107186761, 407879641, 3487920481, 39155632561, 250123560121, 47622568443841, 95853663421561, 322876778328721, 403230060146161, 3034217580863041, 6333850463213521, 13292221046055841, 25335401515201441
Offset: 1

Views

Author

Jon E. Schoenfield, Nov 25 2021

Keywords

Comments

All terms are of the form p^4 * q, with primes p < q.
a(3) = 13203 = 3^4 * 163 is the only term for which q = 2*p^4 + 1; for all other terms, q is either 2*p^4 - 1 (e.g., a(1) = 496 = 2^4 * 31) or (p^4 + 1)/2 (e.g., a(2) = 3321 = 3^4 * 41).

Examples

			Table showing the first 20 terms and their prime factorizations. Because of the different relationships between the prime factors p and q for different terms (see Comments), neither the values of p nor those of q are nondecreasing.
.
   n               a(n) =   p^4 *         q
  --  -------------------------------------
   1                496 =   2^4 *        31
   2               3321 =   3^4 *        41
   3              13203 =   3^4 *       163
   4             195625 =   5^4 *       313
   5             780625 =   5^4 *      1249
   6            2883601 =   7^4 *      1201
   7           11527201 =   7^4 *      4801
   8          107186761 =  11^4 *      7321
   9          407879641 =  13^4 *     14281
  10         3487920481 =  17^4 *     41761
  11        39155632561 =  23^4 *    139921
  12       250123560121 =  29^4 *    353641
  13     47622568443841 =  47^4 *   9759361
  14     95853663421561 =  61^4 *   6922921
  15    322876778328721 =  71^4 *  12705841
  16    403230060146161 =  73^4 *  14199121
  17   3034217580863041 =  79^4 *  77900161
  18   6333850463213521 = 103^4 *  56275441
  19  13292221046055841 = 113^4 *  81523681
  20  25335401515201441 = 103^4 * 225101761
		

Crossrefs

Programs

  • Mathematica
    t[n_] := n*(n + 1)/2; Select[t /@ Range[10^5], DivisorSigma[0, #] == 10 &] (* Amiram Eldar, Nov 26 2021 *)
  • PARI
    select(x->(numdiv(x)==10), vector(10^5, k, k*(k+1)/2)) \\ Michel Marcus, Nov 26 2021