cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349705 Numbers k such that the concatenation in increasing order of their prime factors, with multiplicity, is congruent to 1 (mod k).

Original entry on oeis.org

36, 39, 66, 1435, 5714, 6410, 13861, 22564, 27346, 33137, 45542, 79260, 171860, 268218, 442068, 486127, 675423, 2287527, 3710027, 9610766, 14318290, 26293568, 29361702, 49703324, 227358366, 433100023, 442960845, 479174118, 1221238938, 1243718114, 4053362596, 8620689655
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 25 2021

Keywords

Examples

			a(3) = 66 is a term because the concatenation of its prime factors is 2311 and 2311 == 1 (mod 66).
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,t;
      lcat(map(t -> t[1]$t[2], sort( ifactors(n)[2], (a,b) -> a[1] < b[1]))) mod n = 1;
    end proc:
    select(filter, [$1..10^7]);
  • Mathematica
    upto=10^5;a={};Do[If[Mod[FromDigits[Flatten[Map[IntegerDigits[ConstantArray[First[#],Last[#]]]&,FactorInteger[k]]]],k]==1,AppendTo[a,k]],{k,upto}];a (* Paolo Xausa, Nov 26 2021 *)
  • Python
    from sympy import factorint
    def ok(k): return int("".join(map(str, factorint(k, multiple=True))))%k == 1
    print([k for k in range(2, 10**5) if ok(k)]) # Michael S. Branicky, Nov 26 2021
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A349705_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            c = 0
            for d in sorted(factorint(k,multiple=True)):
                c = (c*10**len(str(d)) + d) % k
            if c == 1:
                yield k
    A349705_list = list(islice(A349705_gen(),10)) # Chai Wah Wu, Feb 28 2022

Extensions

a(28)-a(32) from Martin Ehrenstein, Nov 27 2021