cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349709 Primes p such that if q is the next prime, A004086(p*q) = A004086(p)*A004086(q).

Original entry on oeis.org

2, 7, 11, 97, 101, 1021, 1201, 2003, 3001, 10103, 10111, 20011, 20021, 21001, 101111, 102001, 102101, 112103, 112111, 120103, 201011, 202001, 1000003, 1000211, 1010003, 1010201, 1011001, 1020011, 1100101, 1100311, 1111013, 1111021, 1112003, 1201001, 2011201, 2020001, 2100001, 2100011, 10000103
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 05 2022

Keywords

Examples

			a(6) = 1021 is a term because it is prime, the next prime is 1031, and the reverse of 1021*1031 = 1052651 is 1562501 = 1301*1201.
		

Crossrefs

Cf. A004086.

Programs

  • Maple
    revdigs:= proc(n) local L,i,m;
      L:= convert(n,base,10);
      m:= nops(L);
      add(L[i]*10^(m-i),i=1..m)
    end proc:
    R:= NULL: count:= 0:
    q:= 2: qr:= 2:
    while count < 50 do
      p:= q; pr:= qr;
      q:= nextprime(q); qr:= revdigs(q);
      if pr*qr = revdigs(p*q) then
         count:= count+1; R:= R, p;
      fi
    od:
    R;
  • Mathematica
    seqQ[p_] := PrimeQ[p] && Module[{r = IntegerReverse, q = NextPrime[p]}, r[p*q] == r[p] * r[q]]; Select[Range[2.2*10^6], seqQ] (* Amiram Eldar, Jan 05 2022 *)
  • PARI
    R(n) = fromdigits(Vecrev(digits(n))); \\ A004086
    isok(p) = if (isprime(p), my(q=nextprime(p+1)); R(p*q) == R(p)*R(q)); \\ Michel Marcus, Jan 05 2022
    
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def R(n): return int(str(n)[::-1])
    def agen(): # generator of terms
        p, pr = 2, 2
        while True:
            q = nextprime(p)
            qr = R(q)
            if R(p*q) == pr * qr:
                yield p
            p, pr = q, qr
    print(list(islice(agen(), 38))) # Michael S. Branicky, Jan 05 2022