cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348924 Paschal full moon dates expressed as days after March 21 (Gregorian calendar).

Original entry on oeis.org

15, 4, 23, 12, 1, 20, 9, 28, 17, 6, 25, 14, 3, 22, 11, 0, 19, 8, 27, 15, 4, 23, 12, 1, 20, 9, 28, 17, 6, 25, 14, 3, 22, 11, 0, 19, 8, 27, 15, 4, 23, 12, 1, 20, 9, 28, 17, 6, 25, 14, 3, 22, 11, 0, 19, 8, 27, 15, 4, 23, 12, 1, 20, 9, 28, 17, 6, 25, 14, 3, 22, 11, 0, 19, 8, 27, 15, 4, 23, 12, 1, 20, 9, 28, 17, 6, 25, 14, 3, 22, 11, 0, 19, 8, 27, 15, 4, 23, 12, 1, 21, 10, 28, 18, 7, 26, 15, 4, 23, 12, 1, 20, 9, 27, 16, 5, 24, 13, 2
Offset: 0

Views

Author

Robert B Fowler, Nov 04 2021

Keywords

Comments

The date of the Gregorian Paschal (Ecclesiastical) Full Moon (GPFM) in year n is a(n) days after March 21. The values of a(n) all lie within the range 0 to 28, and correspond to dates March 21 through April 18. Gregorian Easter Sunday is the first Sunday after (never on) the GPFM, so it falls between March 22 and April 25. The complete GPFM cycle is a repeating sequence of 5700000 terms, a(0) through a(5699999), which spans 5700000 Gregorian years, 70499183 Gregorian lunar cycles, 297411750 weeks, and 2081882250 days. Because this is a whole number of weeks, the Gregorian Easter Sunday dates also repeat after 5700000 years; otherwise, Easter Sunday would repeat every 39900000 years. As of AD 2000, the true (astronomical) lunar cycle (synodic month) averages 29.5305888645 days; the Gregorian lunar cycle averages 2081882250/70499183 days = 29.5305869005 days, and thus falls behind the true moon by 0.00243 days per century.
For the older Julian calendar, the corresponding sequence for the Julian Paschal Full Moon (JPFM) consists of the first 19 terms of the GPFM sequence, a(0) through a(18), and it repeats every 19 years. Thus, for year n in the Julian calendar, where n=19*k+m and 0<=m<=18, the JPFM falls a(m) days after March 21 and Julian Easter Sunday is the first Sunday after (never on) the JPFM. Each JPFM cycle spans 19 Julian years, 235 Julian lunar cycles, and an average of 19*365.25 = 6939.75 days. The complete Julian Easter Sunday cycle repeats after 28 JPFM cycles, thereby spanning 532 Julian years, 6580 Julian lunar cycles, 27759 weeks, and 194313 days. The Julian lunar cycle averages 194313/6580 = 29.5308510638 days, and thus drifts ahead of the true moon by 0.3243 days per century.
The year 0 AD (conventionally denoted as 1 BC) is used here as a starting point for a(0) solely as a computational convenience; the observation of both Julian Easter and Gregorian Easter began centuries after 0 AD. Although the Gregorian calendar is used worldwide today for virtually all civil matters, most of the Eastern Orthodox Christian Churches still observe Julian ("Orthodox") Easter Sunday, whereas the Western Christian Churches overwhelmingly observe Gregorian Easter Sunday.

Examples

			For year 2021: n=2021, m=7, c=20, q=5, d=13.
For the Julian calendar: a(m)=28 and s=1, so the JPFM is April 18 and Julian Easter Sunday is April 19, which corresponds to May 2 in the Gregorian calendar.
For the Gregorian calendar: x=7, a(n)=7, and s=7, so the GPFM is March 28 and Gregorian Easter Sunday is April 4, which corresponds to March 22 in the Julian calendar.
		

References

  • Byron Lawrence Gurnette and Richard van der Riet Woolley, Explanatory Supplement to the Astronomical Ephemeris, H. M. Stationery Office, London, 1961, pages 420-429.
  • Donald Ervin Knuth, The Art of Computer Programming, Stanford University, 1968. Volume 1, Chapter 1.3.2, Exercise #14.
  • Thomas Hay O'Beirne, Puzzles and Paradoxes, Oxford University, London, 1965, Chapter 10, pages 168-184. Reprinted by Dover Publications, New York, 1984.
  • Edward Graham Richards, Mapping Time, Oxford University, London, 1998. Part IV, especially pages 364, 375-376.
  • Paul Kenneth Seidelmann and Leroy Elsworth Doggett, Explanatory Supplement to the Astronomical Almanac, Mill Valley, 1992, pages 581-582.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{c = Floor[n/100], q = Floor[n/400], m = Mod[n, 19], x}, x = Mod[19*m + 15 + Floor[(c*17 + 11)/25 - q], 30]; If[(m > 10 && x == 28) || x == 29, x - 1, x]]; Array[a, 120, 0] (* Amiram Eldar, Nov 05 2021 *)

Formula

For both Julian and Gregorian calendars:
n = calendar year (4 digits)
m = n mod 19 = position of n in the 19-year Metonic lunar cycle
c = floor(n/100) = calendar century
q = floor(n/400) = calendar quad-century
d = c-q-2 = days to add to Julian dates to convert to Gregorian
= days to subtract from Gregorian to convert to Julian
For the Julian calendar (repeats cycle a(0) through a(18):
a(m) = days from March 21 to the JPFM (0 to 28 days)
= (19*m+15) mod 30
s = days from JPFM to next Sunday (1 to 7 days)
= 7 - ((a(m)+floor(n*5/4)) mod 7)
Note that a(m) never equals 29, so Easter Sunday never falls on April 26.
For the Gregorian calendar (repeats cycle a(0) through a(5699999):
x = (19*m+15+floor((c*17+11)/25)-q) mod 30
a(n) = days from March 21 to the GPFM (0 to 28 days)
= x-1 if (x=29) or (x=28 and m>10)
= x otherwise
s = days from GPFM to next Sunday (0 to 7 days)
= 7 - ((a(n)+floor(n*5/4)-c+q+2) mod 7)
For compatibility with Julian calendar, Gregorian a(n) never equals 29.

A375027 Number of occurrences of Easter Sunday on March 22, March 23, ..., April 25 during a 532-year Julian Easter cycle.

Original entry on oeis.org

4, 8, 8, 12, 16, 16, 20, 16, 16, 20, 16, 16, 20, 16, 20, 20, 16, 20, 16, 16, 20, 16, 16, 20, 16, 20, 16, 16, 20, 16, 12, 12, 8, 8, 4
Offset: 1

Views

Author

Robert B Fowler, Jul 28 2024

Keywords

Comments

During any 532-year range of the Julian Calendar, each of the 35 possible dates for Easter Sunday occurs either 4, 8, 12, 16, or 20 times. This cycle is much simpler than the Gregorian Easter cycle (A224110).

Crossrefs

Cf. A224110 (frequencies for Gregorian Easter Sunday dates).
Cf. A348924 (algorithms for Paschal Full Moon and Easter Sunday in both Julian and Gregorian Calendars).
Cf. A349710 (algorithms for Paschal Full Moon and Easter Sunday in Julian Calendar).

Formula

Use the Julian Easter algorithm in A348924 for years 1 to 532 (or any range of 532 years), and tally the occurrence of each Easter date between March 22 and April 25.

A380154 Golden numbers, for the years of the Metonic cycle. Assigned to the full moon days of the year with the standard pattern of a Runic calendar. Days without assignment are represented by zero.

Original entry on oeis.org

19, 8, 0, 16, 5, 0, 13, 2, 0, 10, 0, 18, 7, 0, 15, 4, 0, 12, 1, 0, 9, 0, 17, 6, 0, 14, 3, 0, 11, 19, 0, 8, 0, 16, 5, 0, 13, 2, 0, 10, 0, 18, 7, 0, 15, 4, 0, 21, 1, 0, 9, 0, 17, 6, 0, 14, 3, 0, 11, 19, 8, 0, 16, 5, 0, 13, 2, 0, 10, 0, 18, 7, 0, 15, 4, 0, 12, 1, 0, 9, 0, 17, 6, 0, 14, 3, 0, 11, 19, 0, 8, 0, 16, 5, 0, 13
Offset: 1

Views

Author

Thomas Scheuerle, Jan 13 2025

Keywords

Comments

The 19 year Metonic cycle repeats the pattern: 19,*,8,,16,5,,13,2,,10,,18,7,,15,4,,12,1,,9,,17,6,,14,3,,11. The gap marked with * alternates between odd and even cycles.
The alignment of the pattern is based on MS2913 from 1636. This is not accurate anymore in modern days as this pattern needs a shift of one day approximately every 304 years (Hipparchic cycle).
To each year the numbers from 1-19 where cyclically assigned. The positions of these numbers on the days of the year show the full moon for the corresponding year. Beware there are also calendar designs which track new moons with a cycle of 19 numbers.
The numbers are represented either by assigning runes from an extension of the Younger Futhark with three additional runic symbols or by the usage of Pentadic numerals. The latter is the case in MS2913.

Examples

			Note: In the original calendar usage no mapping on month and leap years was considered, instead the start of the year was determined by measuring the solstice each year. Days where originally numbered in 52 "weeks" of 7 days, however the counting restarted with 1 at each start of the year.
.
January
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number 19| 8| 0|16| 5| 0|13| 2| 0|10| 0|18| 7| 0
------------------------------------------------------------------
Day           15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31
Golden number 15| 4| 0|12| 1| 0| 9| 0|17| 6| 0|14| 3| 0|11|19| 0
.
February
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number  8| 0|16| 5| 0|13| 2| 0|10| 0|18| 7| 0|15
------------------------------------------------------------------
Day           15|16|17|18|19|20|21|22|23|24|25|26|27|28
Golden number  4| 0|12| 1| 0| 9| 0|17| 6| 0|14| 3| 0|11
.
March
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number 19| 8| 0|16| 5| 0|13| 2| 0|10| 0|18| 7| 0
------------------------------------------------------------------
Day           15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31
Golden number 15| 4| 0|12| 1| 0| 9| 0|17| 6| 0|14| 3| 0|11|19| 0
.
April
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number  8| 0|16| 5| 0|13| 2| 0|10| 0|18| 7| 0|15
------------------------------------------------------------------
Day            15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30
Golden number   4| 0|12| 1| 0| 9| 0|17| 6| 0|14| 3| 0|11|19| 8
.
May
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number  0|16| 5| 0|13| 2| 0|10| 0|18| 7| 0|15| 4
------------------------------------------------------------------
Day            15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31
Golden number   0|12| 1| 0| 9| 0|17| 6| 0|14| 3| 0|11|19| 0| 8| 0
.
June
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number 16| 5| 0|13| 2| 0|10| 0|18| 7| 0|15| 4| 0
------------------------------------------------------------------
Day            15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30
Golden number  12| 1| 0| 9| 0|17| 6| 0|14| 3| 0|11|19| 8| 0|16
.
July
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number  5| 0|13| 2| 0|10| 0|18| 7| 0|15| 4| 0|12
------------------------------------------------------------------
Day            15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31
Golden number   1| 0| 9| 0|17| 6| 0|14| 3| 0|11|19| 0| 8| 0|16| 5
.
August
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number  0|13| 2| 0|10| 0|18| 7| 0|15| 4| 0|12| 1
------------------------------------------------------------------
Day            15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31
Golden number   0| 9| 0|17| 6| 0|14| 3| 0|11|19| 8| 0|16| 5| 0|13
.
September
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number  2| 0|10| 0|18| 7| 0|15| 4| 0|12| 1| 0| 9
------------------------------------------------------------------
Day            15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30
Golden number   0|17| 6| 0|14| 3| 0|11|19| 0| 8| 0|16| 5| 0|13
.
October
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number  2| 0|10| 0|18| 7| 0|15| 4| 0|12| 1| 0| 9
------------------------------------------------------------------
Day            15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31
Golden number   0|17| 6| 0|14| 3| 0|11|19| 8| 0|16| 5| 0|13| 2| 0
.
November
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number 10| 0|18| 7| 0|15| 4| 0|12| 1| 0| 9| 0|17
------------------------------------------------------------------
Day            15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30
Golden number   6| 0|14| 3| 0|11|19| 0| 8| 0|16| 5| 0|13| 2| 0
.
December
------------------------------------------------------------------
Day            1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14
Golden number 10| 0|18| 7| 0|15| 4| 0|12| 1| 0| 9| 0|17
------------------------------------------------------------------
Day            15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31
Golden number   6| 0|14| 3| 0|11|19| 8| 0|16| 5| 0|13| 2| 0|10| 0
.
Full moons in 2025:
((2025-5) mod 19) + 1 = 7.
This gives us the dates:
  13. January, 12. February, 13. March,
  12. April, 11. May, 10. June,
  9. July, 8. August, 6. September,
  6. October, 4. November, 4. December.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(m = (n-1)%59 + 1); if(m >1, m++); [19, 0, 8, 0, 16, 5, 0, 13, 2, 0, 10, 0, 18, 7, 0, 15, 4, 0, 12, 1, 0, 9, 0, 17, 6, 0, 14, 3, 0, 11][(m-1)%30+1]}

Formula

Golden number (full moon) = ((year-5) mod 19) + 1. Example: 2025 gives 7.
There is also an estimation of new moon possible:
Golden number (new moon) = ((year-1) mod 19) + 1. Example: 2025 gives 11.
Note: The modern definition of the Golden numbers is (Year mod 19) + 1 for new moons, but we adapt here to the offset in MS2913.
a(n) = a(n-59).
Showing 1-3 of 3 results.