cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349712 a(n) = Sum_{d|n} sopf(d) * sopf(n/d).

Original entry on oeis.org

0, 0, 0, 4, 0, 12, 0, 8, 9, 20, 0, 32, 0, 28, 30, 12, 0, 42, 0, 48, 42, 44, 0, 52, 25, 52, 18, 64, 0, 124, 0, 16, 66, 68, 70, 87, 0, 76, 78, 76, 0, 164, 0, 96, 78, 92, 0, 72, 49, 90, 102, 112, 0, 72, 110, 100, 114, 116, 0, 234, 0, 124, 102, 20, 130, 244, 0, 144, 138, 236, 0, 132, 0, 148, 110
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2021

Keywords

Comments

Dirichlet convolution of A008472 with itself.

Crossrefs

Programs

  • Mathematica
    sopf[n_] := DivisorSum[n, # &, PrimeQ[#] &]; a[n_] := Sum[sopf[d] sopf[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 75}]
  • PARI
    sopf(n) = vecsum(factor(n)[, 1]); \\ A008472
    a(n) = sumdiv(n, d, sopf(d)*sopf(n/d)); \\ Michel Marcus, Nov 26 2021
    
  • Python
    from sympy import divisors, factorint
    def sopf(n): return sum(factorint(n))
    def a(n): return sum(sopf(d)*sopf(n//d) for d in divisors(n))
    print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Nov 26 2021

Formula

Dirichlet g.f.: ( zeta(s) * primezeta(s-1) )^2.
a(n) = Sum_{d|n} A061397(d) * A319131(n/d).
a(p) = 0 for p prime. - Michael S. Branicky, Nov 26 2021
a(p^k) = (k-1)*p^2 for p prime and k > 0. - Chai Wah Wu, Nov 28 2021